You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Auslander made contributions to many parts of algebra, and this 2-volume set (the set ISBN is 0-8218-0679-3, already published) contains a selection of his main work.
For any researcher working in representation theory, algebraic or arithmetic geometry.
The ICRA VII was held at Cocoyoc, Mexico, in August 1994. This was the second time that the ICRA was held in Mexico: ICRA III took place in Puebla in 1980. The 1994 conference included 62 lectures, all listed in these Proceedings. Not all contributions presented, however, appear in this book. Most papers in this volume are in final form with complete proofs, with the only exception being the paper of Leszczynski and Skowronski, Auslander algebras of tame representation type, that the editors thought useful to include.
Auslander made contributions to many parts of algebra, and this 2-volume set (the set ISBN is 0-8218-0679-3, already published) contains a selection of his main work.
Surveys developments in the representation theory of finite dimensional algebras and related topics in seven papers illustrating different techniques developed over the recent years. For graduate students and researchers with a background in commutative algebra, including rings, modules, and homological algebra. Suitable as a text for an advanced graduate course. No index. Member prices are $31 for institutions and $23 for individuals, and are available to members of the Canadian Mathematical Society. Annotation copyrighted by Book News, Inc., Portland, OR
This textbook introduces the representation theory of algebras by focusing on two of its most important aspects: the Auslander–Reiten theory and the study of the radical of a module category. It starts by introducing and describing several characterisations of the radical of a module category, then presents the central concepts of irreducible morphisms and almost split sequences, before providing the definition of the Auslander–Reiten quiver, which encodes much of the information on the module category. It then turns to the study of endomorphism algebras, leading on one hand to the definition of the Auslander algebra and on the other to tilting theory. The book ends with selected properties of representation-finite algebras, which are now the best understood class of algebras. Intended for graduate students in representation theory, this book is also of interest to any mathematician wanting to learn the fundamentals of this rapidly growing field. A graduate course in non-commutative or homological algebra, which is standard in most universities, is a prerequisite for readers of this book.
This volume contains the proceedings of the Maurice Auslander Distinguished Lectures and International Conference, held April 25-30, 2012, in Falmouth, MA. The representation theory of finite dimensional algebras and related topics, especially cluster combinatorics, is a very active topic of research. This volume contains papers covering both the history and the latest developments in this topic. In particular, Otto Kerner gives a review of basic theorems and latest results about wild hereditary algebras, Yuri Berest develops the theory of derived representation schemes, and Markus Schmidmeier presents new applications of arc diagrams.
This book is an introduction to the contemporary representation theory of Artin algebras, by three very distinguished practitioners in the field. Beyond assuming some first-year graduate algebra and basic homological algebra, the presentation is entirely self-contained, so the book is suitable for any mathematicians (especially graduate students) wanting an introduction to this active field.'...written in a clear comprehensive style with full proofs. It can very well serve as an excellent reference as well as a textbook for graduate students.' EMS Newletter
Containing four parts such as Analytic Geometry, Algebraic Geometry, Variations of Hodge Structures, and Differential Systems that are organized according to the subject matter, this title provides the reader with a panoramic view of important and exciting mathematics during the second half of the 20th century.
Collects the articles that cover invariant differential operators, geometric properties of solutions to differential equations on symmetric spaces, double fibrations in integral geometry, spherical functions and spherical transforms, duality for symmetric spaces, representation theory, and the Fourier transform on G/K.