You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
In the past decades, model reduction has become an ubiquitous tool in analysis and simulation of dynamical systems, control design, circuit simulation, structural dynamics, CFD, and many other disciplines dealing with complex physical models. The aim of this book is to survey some of the most successful model reduction methods in tutorial style articles and to present benchmark problems from several application areas for testing and comparing existing and new algorithms. As the discussed methods have often been developed in parallel in disconnected application areas, the intention of the mini-workshop in Oberwolfach and its proceedings is to make these ideas available to researchers and practitioners from all these different disciplines.
The international Conference on Optimal Control of Coupled Systems of partial Differential Equations was held at the Mathematisches Forschungs institut Oberwolfach from April, 17 to 23, 2005. The applications discussed during the conference includes the optimization and control of quantum mechanical systems.
Interest in the area of control of systems defined by partial differential Equations has increased strongly in recent years. A major reason has been the requirement of these systems for sensible continuum mechanical modelling and optimization or control techniques which account for typical physical phenomena. Particular examples of problems on which substantial progress has been made are the control and stabilization of mechatronic structures, the control of growth of thin films and crystals, the control of Laser and semi-conductor devices, and shape optimization problems for turbomachine blades, shells, smart materials and microdiffractive optics. This volume contains original articles by w...
The application of PDE-based control theory and the corresponding numerical algorithms to industrial problems have become increasingly important in recent years. This volume offers a wide spectrum of aspects of the discipline, and is of interest to mathematicians and scientists working in the field.
This book is a collection of thoroughly refereed papers presented at the 25th IFIP TC 7 Conference on System Modeling and Optimization, held in Dresden, Germany, in September 2011. The 55 revised papers were carefully selected from numerous submissions. They are organized in the following topical sections: control of distributed parameter systems; stochastic optimization and control; stabilization, feedback, and model predictive control; flow control; shape and structural optimization; and applications and control of lumped parameter systems.
The application of modern methods in numerical mathematics on problems in chemical engineering is essential for designing, analyzing and running chemical processes and even entire plants. Scientific Computing in Chemical Engineering II gives the state of the art from the point of view of numerical mathematicians as well as that of engineers. The present volume as part of a two-volume edition covers topics such as computer-aided process design, combustion and flame, image processing, optimization, control, and neural networks. The volume is aimed at scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.
The study of kinetic equations related to gases, semiconductors, photons, traffic flow, and other systems has developed rapidly in recent years because of its role as a mathematical tool in areas such as engineering, meteorology, biology, chemistry, materials science, nanotechnology, and pharmacy. Written by leading specialists in their respective fields, this book presents an overview of recent developments in the field of mathematical kinetic theory with a focus on modeling complex systems, emphasizing both mathematical properties and their physical meaning. Transport Phenomena and Kinetic Theory is an excellent self-study reference for graduate students, researchers, and practitioners working in pure and applied mathematics, mathematical physics, and engineering. The work may be used in courses or seminars on selected topics in transport phenomena or applications of the Boltzmann equation.
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings ...
This book should illustrate the impact of collaborations between mathematics and industry. It is both an initiative of and coordinated by the German Committee for Mathematical Modeling, Simulation and Optimization (KoMSO). This publication aims at comparing the state of the art at the intersection of mathematics and industry, as well as the demands for future development of science and technology in Germany and beyond. Each contribution addresses the importance of mathematics in innovation by means of introducing a successful cooperation with an industrial partner in order to display the wide range of industrial sectors where the use of mathematics is the crucial factor for success, but also show the variety of mathematical areas involved in these activities. The success stories introduced in this volume will be supplemented by appropriate illustrations. It is the goal of this publication to highlight cooperation between mathematics and industry as a two-way technology and knowledge transfer, providing industry with solutions and mathematics with new research topics and inspiring new methodologies.