You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This lecture note provides a tutorial review of non-Abelian discrete groups and presents applications to particle physics where discrete symmetries constitute an important principle for model building. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics—particularly model building beyond the standard model—non-Abelian discrete symmetries have been applied particularly to understand the three-generation flavor structure. The non-Abelian discrete symmetries are indeed considered to be the most attractive choice for a flavor sector: Model builders have tried to derive experimental values of quark and lepton masses, mixing angles and CP phas...
These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, a...
This book is a collection of invited contributions presented at the 8th edition of the International Workshop on Theory, Phenomenology and Experiments in Flavour Physics, held on the Island of Capri, Italy, on 11–13 June 2022. It is a joint workshop between experimentalists and theoreticians aiming at debating recent results and hot topics in flavour physics, in an interdisciplinary effort. Flavour, electroweak physics and neutrino physics are all foremost in the assessment of results within the standard model and search for physics beyond. Anomalies in flavour physics are hints on new physics, while with neutrino masses and oscillations the new physics has already started. Contributions deal mainly with the flavour anomalies, the flavour problem from leptons to quarks and back, including continuous versus discrete symmetries, and the connections between the Higgs sector and neutrinos, embracing see-saw models and Higgs potential analyses. Focus is on neutrinos, at high and low scales, including LHC searches and CLVF, leptogenesis, connections with dark sectors and NP mediators, non-standard neutrino interactions and the problem of the nature of massive neutrinos.
This book presents topics of major interest to the high energy physics community, as well as recent research results.
Bringing together leading researchers from particle physics, astrophysics, and cosmology, Lepton and Baryon Number Violation in Particle Physics, Astrophysics and Cosmology presents reviews of current theoretical ideas, experimental results, and future perspectives in this topical field. The book covers areas related to baryon number (B) and lepton
Neutrino '96 is indispensable for students and researchers of neutrino physics. It contains up-to-date reviews and discussions on topics such as Solar Neutrino Physics, Neutrino Oscillations, Intrinsic Neutrino Properties, and Neutrino Cosmology and Astronomy.
This useful text provides a survey of the current state of research into the physics of neutrinos. It gives a global view of the areas of physics in which neutrinos play important roles, including astrophysics and cosmology.
It is widely accepted that quarks and leptons should be understood on the basis of the same unification scheme. The investigation of hidden rules behind observed quark and lepton mass spectra will provide a very important clue to a unified model of quarks and leptons. Now the investigation is timely because of the recent abundance of data on the CKM matrix elements and neutrino mixings. This volume offers useful information and hints on a unified understanding of quarks and leptons.