You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
State-of-the-art robotics research on such topics as manipulation, motion planning, micro-robotics, distributed systems, autonomous navigation, and mapping. Robotics: Science and Systems IV spans a wide spectrum of robotics, bringing together researchers working on the foundations of robotics, robotics applications, and analysis of robotics systems. This volume presents the proceedings of the fourth annual Robotics: Science and Systems conference, held in 2008 at the Swiss Federal Institute of Technology in Zurich. The papers presented cover a range of topics, including computer vision, mapping, terrain identification, distributed systems, localization, manipulation, collision avoidance, mul...
This book constitutes the thoroughly refereed post-proceedings of the 23rd International Workshop on Languages and Compilers for Parallel Computing, LCPC 2010, held in Houston, TX, USA, in October 2010. The 18 revised full papers presented were carefully reviewed and selected from 47 submissions. The scope of the workshop spans foundational results and practical experience, and targets all classes of parallel platforms including concurrent, multithreaded, multicore, accelerated, multiprocessor, and cluster systems
This book constitutes the thoroughly refereed post-conference proceedings of the 25th International Workshop on Languages and Compilers for Parallel Computing, LCPC 2012, held in Tokyo, Japan, in September 2012. The 16 revised full papers, 5 poster papers presented with 1 invited talk were carefully reviewed and selected from 39 submissions. The focus of the papers is on following topics: compiling for parallelism, automatic parallelization, optimization of parallel programs, formal analysis and verification of parallel programs, parallel runtime systems, task-parallel libraries, parallel application frameworks, performance analysis tools, debugging tools for parallel programs, parallel algorithms and applications.
Swarm robotics can be defined as the study of how a swarm of relatively simple physically embodied agents can be constructed to collectively accomplish tasks that are beyond the capabilities of a single one. Unlike other studies on multi-robot systems, swarm robotics emphasizes self-organization and emergence, while keeping in mind the issues of scalability and robustness. These emphases promote the use of relatively simple robots, equipped with localized sensing ability, scalable communication mechanisms, and the exploration of decentralized control strategies. This state-of-the-art survey is the first book devoted to swarm robotics. It is based on the First International Workshop on Swarm Robotics held in Santa Monica, CA, USA in July 2004 as part of SAB 2004
Selected contributions to the Workshop WAFR 2002, held December 15-17, 2002, Nice, France. This fifth biannual Workshop on Algorithmic Foundations of Robotics focuses on algorithmic issues related to robotics and automation. The design and analysis of robot algorithms raises fundamental questions in computer science, computational geometry, mechanical modeling, operations research, control theory, and associated fields. The highly selective program highlights significant new results such as algorithmic models and complexity bounds. The validation of algorithms, design concepts, or techniques is the common thread running through this focused collection.
This book gathers the outcomes of the thirteenth Workshop on the Algorithmic Foundations of Robotics (WAFR), the premier event for showcasing cutting-edge research on algorithmic robotics. The latest WAFR, held at Universidad Politécnica de Yucatán in Mérida, México on December 9–11, 2018, continued this tradition. This book contains fifty-four papers presented at WAFR, which highlight the latest research on fundamental algorithmic robotics (e.g., planning, learning, navigation, control, manipulation, optimality, completeness, and complexity) demonstrated through several applications involving multi-robot systems, perception, and contact manipulation. Addressing a diverse range of topics in papers prepared by expert contributors, the book reflects the state of the art and outlines future directions in the field of algorithmic robotics.
This volume gathers together cutting-edge research from the Third Workshop on Algorithmic Foundations of Robotics and gives a solid overview of the state of the art in robot algorithms. The papers cover core problems in robotics, such as motion planning, sensor-based planning, manipulation, and assembly planning. They also examine the application o
The four volume set assembled following The 2005 International Conference on Computational Science and its Applications, ICCSA 2005, held in Suntec International Convention and Exhibition Centre, Singapore, from 9 May 2005 till 12 May 2005, represents the ?ne collection of 540 refereed papers selected from nearly 2,700 submissions. Computational Science has ?rmly established itself as a vital part of many scienti?c investigations, a?ecting researchers and practitioners in areas ranging from applications such as aerospace and automotive, to emerging technologies such as bioinformatics and nanotechnologies, to core disciplines such as ma- ematics, physics, and chemistry. Due to the shear size ...
This book constitutes the thoroughly refereed post-conference proceedings of the 28th International Workshop on Languages and Compilers for Parallel Computing, LCPC 2015, held in Raleigh, NC, USA, in September 2015. The 19 revised full papers were carefully reviewed and selected from 44 submissions. The papers are organized in topical sections on programming models, optimizing framework, parallelizing compiler, communication and locality, parallel applications and data structures, and correctness and reliability.
Did you know that any straight-line drawing on paper can be folded so that the complete drawing can be cut out with one straight scissors cut? That there is a planar linkage that can trace out any algebraic curve, or even 'sign your name'? Or that a 'Latin cross' unfolding of a cube can be refolded to 23 different convex polyhedra? Over the past decade, there has been a surge of interest in such problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this treatment gives hundreds of results and over 60 unsolved 'open problems' to inspire further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Aimed at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from school students to researchers.