You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book presents studies on the inelastic behavior of materials and structures under monotonic and cyclic loads. It focuses on the description of new effects like purely thermal cycles or cases of non-trivial damages. The various models are based on different approaches and methods and scaling aspects are taken into account. In addition to purely phenomenological models, the book also presents mechanisms-based approaches. It includes contributions written by leading authors from a host of different countries.
Nuclear sites become contaminated with radionuclides due to accidents and activities carried out without due consideration for the environment. Naturally-occurring radioactive materials (NORM) released by industrial processes such as coal power production and fertilizer manufacture may also require clean-up. Environmental remediation and restoration aim to reduce exposure to radiation from contaminated soil or groundwater. This book provides a comprehensive overview of this area. Part 1 provides an introduction to the different types of contaminated site and their characteristics. Part 2 addresses environmental restoration frameworks and processes. Part 3 then reviews different remediation t...
Advanced District Heating and Cooling (DHC) Systems presents the latest information on the topic, providing valuable information on the distribution of centrally generated heat or cold energy to buildings, usually in the form of space heating, cooling, and hot water. As DHC systems are more efficient and less polluting than individual domestic or commercial heating and cooling systems, the book provides an introduction to DHC, including its potential contribution to reducing carbon dioxide emissions, then reviews thermal energy generation for DHC, including fossil fuel-based technologies, those based on renewables, and surplus heat valorization. Final sections address methods to improve the ...
By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated. This book includes recent contribution...
Membrane Reactors for Energy Applications and Basic Chemical Production presents a discussion of the increasing interest in membrane reactors that has emerged in recent years from both the scientific and industrial communities, in particular their usage for energy applications and basic chemical production. Part One of the text investigates membrane reactors for syngas and hydrogen production, while Part Two examines membrane reactors for other energy applications, including biodiesel and bioethanol production. The final section of the book reviews the use of membrane reactors in basic chemical production, including discussions of the use of MRs in ammonia production and the dehydrogenation of alkanes to alkenes. - Provides comprehensive coverage of membrane reactors as presented by a world-renowned team of experts - Includes discussions of the use of membrane reactors in ammonia production and the dehydrogenation of alkanes to alkenes - Tackles the use of membrane reactors in syngas, hydrogen, and basic chemical production - Keen focus placed on the industry, particularly in the use of membrane reactor technologies in energy
Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. - Expert editor from highly respected US government-funded research centre - Unique focus on superconductors in the power grid - Comprehensive coverage
Reprocessing and Recycling of Spent Nuclear Fuel presents an authoritative overview of spent fuel reprocessing, considering future prospects for advanced closed fuel cycles. Part One introduces the recycling and reprocessing of spent nuclear fuel, reviewing past and current technologies, the possible implications of Generation IV nuclear reactors, and associated safely and security issues. Parts Two and Three focus on aqueous-based reprocessing methods and pyrochemical methods, while final chapters consider the cross-cutting aspects of engineering and process chemistry and the potential for implementation of advanced closed fuel cycles in different parts of the world. - Expert introduction to the recycling and reprocessing of spent nuclear fuel - Detailed overview of past and current technologies, the possible implications of Generation IV nuclear reactors, and associated safely and security issues - A lucid exploration of aqueous-based reprocessing methods and pyrochemical methods
Magnetic Fusion Energy: From Experiments to Power Plants is a timely exploration of the field, giving readers an understanding of the experiments that brought us to the threshold of the ITER era, as well as the physics and technology research needed to take us beyond ITER to commercial fusion power plants. With the start of ITER construction, the world's magnetic fusion energy (MFE) enterprise has begun a new era. The ITER scientific and technical (S&T) basis is the result of research on many fusion plasma physics experiments over a period of decades. Besides ITER, the scope of fusion research must be broadened to create the S&T basis for practical fusion power plants, systems that will continuously convert the energy released from a burning plasma to usable electricity, operating for years with only occasional interruptions for scheduled maintenance. - Provides researchers in academia and industry with an authoritative overview of the significant fusion energy experiments - Considers the pathway towards future development of magnetic fusion energy power plants - Contains experts contributions from editors and others who are well known in the field
Compendium of Hydrogen Energy: Hydrogen Production and Purification, the first text in a four-volume series, focuses on the production of hydrogen. As many experts believe that the hydrogen economy will eventually replace the fossil fuel economy as our primary source of energy, the text provides a timely discussion on this interesting topic. The text details the methods of hydrogen production using fossil fuels, also exploring sustainable extraction methods of hydrogen production from water and hydrogen purification processes. - Provides a comprehensive understanding of the current methods used in the production of hydrogen - Discusses the hydrogen economy and its potential to replace fossil fuels as our primary source of energy - Details the methods of hydrogen production using fossil fuels, also exploring sustainable extraction methods of hydrogen production from water and hydrogen purification processes
Due to their continuing role in electricity generation, it is important that coal power plants operate as efficiently and cleanly as possible. Coal Power Plant Materials and Life Assessment reviews the materials used in coal plants, and how they can be assessed and managed to optimize plant operation. Part I considers the structural alloys used in coal plants. Part II then reviews performance modelling and life assessment techniques, explains the inspection and life-management approaches that can be adopted to optimize long term plant operation, and considers the technical and economic issues involved in meeting variable energy demands. - Summarizes key research on coal-fired power plant materials, their behavior under operational loads, and approaches to life assessment and defect management - Details the range of structural alloys used in coal power plants, and the life assessment techniques applicable to defect-free components under operational loads - Reviews the life assessment techniques applicable to components containing defects and the approaches that can be adopted to optimize plant operation and new plant and component design