You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the AMS Special Sessions on Algorithmic Probability and Combinatories held at DePaul University on October 5-6, 2007 and at the University of British Columbia on October 4-5, 2008. This volume collects cutting-edge research and expository on algorithmic probability and combinatories. It includes contributions by well-established experts and younger researchers who use generating functions, algebraic and probabilistic methods as well as asymptotic analysis on a daily basis. Walks in the quarter-plane and random walks (quantum, rotor and self-avoiding), permutation tableaux, and random permutations are considered. In addition, articles in the volume pres...
Lie theory has connections to many other disciplines such as geometry, number theory, mathematical physics, and algebraic combinatorics. The interaction between algebra, geometry and combinatorics has proven to be extremely powerful in shedding new light on each of these areas. This book presents the lectures given at the Fields Institute Summer School on Geometric Representation Theory and Extended Affine Lie Algebras held at the University of Ottawa in 2009. It provides a systematic account by experts of some of the exciting developments in Lie algebras and representation theory in the last two decades. It includes topics such as geometric realizations of irreducible representations in thr...
This volume consists of the proceedings of the Workshop on Analysis and Simulation of Communication Networks held at The Fields Institute (Toronto). The workshop was divided into two main themes, entitled "Stability and Load Balancing of a Network of Call Centres" and "Traffic and Performance". The call centre industry is large and fast-growing. In order to provide top-notch customer service, it needs good mathematical models. The first part of the volume focuses on probabilistic issues involved in optimizing the performance of a call centre. While this was the motivating application, many of the papers are also applicable to more general distributed queueing networks. The second part of the volume discusses the characterization of traffic streams and how to estimate their impact on the performance of a queueing system. The performance of queues under worst-case traffic flows or flows with long bursts is treated. These studies are motivated by questions about buffer dimensioning and call admission control in ATM or IP networks. This volume will serve researchers as a comprehensive, state-of-the-art reference source on developments in this rapidly expanding field.
These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ``instructional'' workshop preceding the conference, there were also workshops on ``Commutative Algebra, Algebraic Geometry and Representation Theory'', ``Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ``Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are stron...
A large number of mathematical models in many diverse areas of science and engineering have lead to the formulation of optimization problems where the best solution (globally optimal) is needed. This book covers a small subset of important topics in global optimization with emphasis on theoretical developments and scientific applications.
Stochastic Analysis: Liber Amicorum for Moshe Zakai focuses on stochastic differential equations, nonlinear filtering, two-parameter martingales, Wiener space analysis, and related topics. The selection first ponders on conformally invariant and reflection positive random fields in two dimensions; real time architectures for the Zakai equation and applications; and quadratic approximation by linear systems controlled from partial observations. Discussions focus on predicted miss, review of basic sequential detection problems, multigrid algorithms for the Zakai equation, invariant test functions and regularity, and reflection positivity. The text then takes a look at a model of stochastic dif...
This volume contains nine survey articles based on the invited lectures given at the 24th British Combinatorial Conference, held at Royal Holloway, University of London in July 2013. This biennial conference is a well-established international event, with speakers from around the world. The volume provides an up-to-date overview of current research in several areas of combinatorics, including graph theory, matroid theory and automatic counting, as well as connections to coding theory and Bent functions. Each article is clearly written and assumes little prior knowledge on the part of the reader. The authors are some of the world's foremost researchers in their fields, and here they summarise existing results and give a unique preview of cutting-edge developments. The book provides a valuable survey of the present state of knowledge in combinatorics, and will be useful to researchers and advanced graduate students, primarily in mathematics but also in computer science and statistics.
This book provides an overview of recent progress in computer simulations of nonperturbative phenomena in quantum field theory, particularly in the context of the lattice approach. It is a collection of extensive self-contained reviews of various subtopics, including algorithms, spectroscopy, finite temperature physics, Yukawa and chiral theories, bounds on the Higgs meson mass, the renormalization group, and weak decays of hadrons.Physicists with some knowledge of lattice gauge ideas will find this book a useful and interesting source of information on the recent developments in the field.
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary background ideas making this work accessible to advanced graduate students. The later chapters culminate in a unified and conceptual construction of several Hopf algebras based on combinatorial objects which emerge naturally from the geometric viewpoint. This work lays a foundation and provides new insights for further development of the subject.
This monograph is concerned with Galois theoretical embedding problems of so-called Brauer type with a focus on 2-groups and on finding explicit criteria for solvability and explicit constructions of the solutions. The advantage of considering Brauer type embedding problems is their comparatively simple condition for solvability in the form of an obstruction in the Brauer group of the ground field. The book presupposes knowledge of classical Galois theory and the attendant algebra. Before considering questions of reducing the embedding problems and reformulating the solvability criteria, the author provides the necessary theory of Brauer groups, group cohomology and quadratic forms. The book will be suitable for students seeking an introduction to embedding problems and inverse Galois theory. It will also be a useful reference for researchers in the field.