Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Semi-Markov Chains and Hidden Semi-Markov Models toward Applications
  • Language: en
  • Pages: 233

Semi-Markov Chains and Hidden Semi-Markov Models toward Applications

Here is a work that adds much to the sum of our knowledge in a key area of science today. It is concerned with the estimation of discrete-time semi-Markov and hidden semi-Markov processes. A unique feature of the book is the use of discrete time, especially useful in some specific applications where the time scale is intrinsically discrete. The models presented in the book are specifically adapted to reliability studies and DNA analysis. The book is mainly intended for applied probabilists and statisticians interested in semi-Markov chains theory, reliability and DNA analysis, and for theoretical oriented reliability and bioinformatics engineers.

Semi-Markov Models and Applications
  • Language: en
  • Pages: 403

Semi-Markov Models and Applications

This book presents a selection of papers presented to the Second Inter national Symposium on Semi-Markov Models: Theory and Applications held in Compiegne (France) in December 1998. This international meeting had the same aim as the first one held in Brussels in 1984 : to make, fourteen years later, the state of the art in the field of semi-Markov processes and their applications, bring together researchers in this field and also to stimulate fruitful discussions. The set of the subjects of the papers presented in Compiegne has a lot of similarities with the preceding Symposium; this shows that the main fields of semi-Markov processes are now well established particularly for basic applicati...

Applied Reliability Engineering and Risk Analysis
  • Language: en
  • Pages: 449

Applied Reliability Engineering and Risk Analysis

This complete resource on the theory and applications of reliability engineering, probabilistic models and risk analysis consolidates all the latest research, presenting the most up-to-date developments in this field. With comprehensive coverage of the theoretical and practical issues of both classic and modern topics, it also provides a unique commemoration to the centennial of the birth of Boris Gnedenko, one of the most prominent reliability scientists of the twentieth century. Key features include: expert treatment of probabilistic models and statistical inference from leading scientists, researchers and practitioners in their respective reliability fields detailed coverage of multi-stat...

Queueing Theory 1
  • Language: en
  • Pages: 338

Queueing Theory 1

The aim of this book is to reflect the current cutting-edge thinking and established practices in the investigation of queueing systems and networks. This first volume includes ten chapters written by experts well-known in their areas. The book studies the analysis of queues with interdependent arrival and service times, characteristics of fluid queues, modifications of retrial queueing systems and finite-source retrial queues with random breakdowns, repairs and customers’ collisions. Some recent tendencies in the asymptotic analysis include the average and diffusion approximation of Markov queueing systems and networks, the diffusion and Gaussian limits of multi-channel queueing networks with rather general input flow, and the analysis of two-time-scale nonhomogenous Markov chains using the large deviations principle. The book also analyzes transient behavior of infinite-server queueing models with a mixed arrival process, the strong stability of queueing systems and networks, and applications of fast simulation methods for solving high-dimension combinatorial problems.

Fault Trees
  • Language: en
  • Pages: 152

Fault Trees

Fault tree analysis is an important technique in determining the safety and dependability of complex systems. Fault trees are used as a major tool in the study of system safety as well as in reliability and availability studies. The basic methods – construction, logical analysis, probability evaluation and influence study – are described in this book. The following extensions of fault trees, non-coherent fault trees, fault trees with delay and multi-performance fault trees, are also explained. Traditional algorithms for fault tree analysis are presented, as well as more recent algorithms based on binary decision diagrams (BDD).

Probability, Statistics and Modelling in Public Health
  • Language: en
  • Pages: 501

Probability, Statistics and Modelling in Public Health

Probability, Statistics and Modelling in Public Health consists of refereed contributions by expert biostatisticians that discuss various probabilistic and statistical models used in public health. Many of them are based on the work of Marvin Zelen of the Harvard School of Public Health. Topics discussed include models based on Markov and semi-Markov processes, multi-state models, models and methods in lifetime data analysis, accelerated failure models, design and analysis of clinical trials, Bayesian methods, pharmaceutical and environmental statistics, degradation models, epidemiological methods, screening programs, early detection of diseases, and measurement and analysis of quality of life.

Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences
  • Language: en
  • Pages: 275

Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences. Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.

Statistical Topics and Stochastic Models for Dependent Data with Applications
  • Language: en
  • Pages: 281

Statistical Topics and Stochastic Models for Dependent Data with Applications

This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.

Markov Chains
  • Language: en
  • Pages: 306

Markov Chains

Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest. The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the Kolmogorov equations, the convergence to equilibrium and the passage time distributions to a state a...

Simulation of Stochastic Processes with Given Accuracy and Reliability
  • Language: en
  • Pages: 348

Simulation of Stochastic Processes with Given Accuracy and Reliability

  • Type: Book
  • -
  • Published: 2016-11-22
  • -
  • Publisher: Elsevier

Simulation has now become an integral part of research and development across many fields of study. Despite the large amounts of literature in the field of simulation and modeling, one recurring problem is the issue of accuracy and confidence level of constructed models. By outlining the new approaches and modern methods of simulation of stochastic processes, this book provides methods and tools in measuring accuracy and reliability in functional spaces. The authors explore analysis of the theory of Sub-Gaussian (including Gaussian one) and Square Gaussian random variables and processes and Cox processes. Methods of simulation of stochastic processes and fields with given accuracy and reliability in some Banach spaces are also considered. - Provides an analysis of the theory of Sub-Gaussian (including Gaussian one) and Square Gaussian random variables and processes - Contains information on the study of the issue of accuracy and confidence level of constructed models not found in other books on the topic - Provides methods and tools in measuring accuracy and reliability in functional spaces