You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book explains many fundamental ideas on the theory of distributions. The theory of partial differential equations is one of the synthetic branches of analysis that combines ideas and methods from different fields of mathematics, ranging from functional analysis and harmonic analysis to differential geometry and topology. This presents specific difficulties to those studying this field. This second edition, which consists of 10 chapters, is suitable for upper undergraduate/graduate students and mathematicians seeking an accessible introduction to some aspects of the theory of distributions. It can also be used for one-semester course.
An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element app...
This book has been designed to introduce the fundamental concepts of Continuum Mechanics. A unique feature of the book is that each chapter has been presented with different types of solved problems that are explained in a simple way. This book also contains a wide variety of exercises which are intended to be an important part of the text. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
The monograph "Micropolar Theory of Elasticity" is devoted to the asymmetric theory of elasticity and thermoelasticity, aiming at researchers and postgraduate students in solid mechanics and applied mathematics, as well as mechanical engineers. It offers various new results including the basic field equations, general methods of integration of basic equations, formulations of problems, as well as solutions to particular problems. The presented general solutions cover those of Galerkin, Green-Lamé and Papkovitch-Neuber type, whereas the formulations include the displacement-rotation problems as well as pure stress problems of asymmetric elastodynamics. Solutions to stationary 3D and 2D problems for a half-space, and singular solutions to 3D and 2D asymmetric elastodynamics and the thermoelasto-dynamics problems for an infinite space are given.
A rigorous analysis and description of general motion in mechanical systems, which includes over 400 figures illustrating every concept, and a large collection of useful exercises. Ideal for students studying mechanical engineering, and as a reference for graduate students and researchers.
Due to the increased use of composite materials in aerospace, energy, automobile, and civil infrastructure applications, concern over composite material failures has grown, creating a need for smart composite structures that are able to self-diagnose and self-heal. Structural Health Monitoring Technologies and Next-Generation Smart Composite Structures provides valuable insight into cutting-edge advances in SHM, smart materials, and smart structures. Comprised of chapters authored by leading researchers in their respective fields, this edited book showcases exciting developments in general embedded sensor technologies, general sensor technologies, sensor response interrogation and data communication, damage matrix formulation, damage mechanics and analysis, smart materials and structures, and SHM in aerospace applications. Each chapter makes a significant contribution to the prevention of structural failures by describing methods that increase safety and reduce maintenance costs in a variety of SHM applications.
This monograph overviews classic and recent developments in theoretical statistical optics in connection with stationary and non-stationary (pulsed) optical source characterization and modeling, discusses various phenomena occurring with random light propagating in free space, on its interaction with optical systems, extended media and particulate collections. The text includes scalar, beam-like and general electromagnetic treatment of light. A brief statistical description of four fundamental experiments relating to random light: spatial and temporal field interference, intensity interferometry and phase conjugation, is also included in order to relate the analytical descriptions with pract...