You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book contains selected papers of NSC08, the 2nd Conference on Nonlinear Science and Complexity, held 28-31 July, 2008, Porto, Portugal. It focuses on fundamental theories and principles, analytical and symbolic approaches, computational techniques in nonlinear physics and mathematics. Topics treated include • Chaotic Dynamics and Transport in Classic and Quantum Systems • Complexity and Nonlinearity in Molecular Dynamics and Nano-Science • Complexity and Fractals in Nonlinear Biological Physics and Social Systems • Lie Group Analysis and Applications in Nonlinear Science • Nonlinear Hydrodynamics and Turbulence • Bifurcation and Stability in Nonlinear Dynamic Systems • Nonlinear Oscillations and Control with Applications • Celestial Physics and Deep Space Exploration • Nonlinear Mechanics and Nonlinear Structural Dynamics • Non-smooth Systems and Hybrid Systems • Fractional dynamical systems
This book describes the state of the art in nonlinear dynamical reconstruction theory. The chapters are based upon a workshop held at the Isaac Newton Institute, Cambridge University, UK, in late 1998. The book's chapters present theory and methods topics by leading researchers in applied and theoretical nonlinear dynamics, statistics, probability, and systems theory. Features and topics: * disentangling uncertainty and error: the predictability of nonlinear systems * achieving good nonlinear models * delay reconstructions: dynamics vs. statistics * introduction to Monte Carlo Methods for Bayesian Data Analysis * latest results in extracting dynamical behavior via Markov Models * data compression, dynamics and stationarity Professionals, researchers, and advanced graduates in nonlinear dynamics, probability, optimization, and systems theory will find the book a useful resource and guide to current developments in the subject.
Fur die Analyse des Langzeitverhaltens dynamischer Systeme werden in dieser Dissertation drei neue Ansatze, basierend auf Transferoperator-Methoden, zur Entwicklung effizienter Algorithmen vorgestellt. Zuerst leiten wir eine Diskretisierung auf dunnen Gittern her, um den Fluch der Dimension in den Griff zu bekommen. Die zweite Methode behandelt den infinitesimalen Generator der Transferoperator-Halbgruppe fur zeit-kontinuierliche Systeme. Als Drittes benutzen wir mean-field-Theorie, um die Dynamik von Subsystemen zu beschreiben, wobei besonderes Augenmerk auf die Konformationsanalyse in der Molekuldynamik gerichtet wird. Des Weiteren werden Bedingungen hergeleitet, unter welchen die Galerkin...
The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting. Contents: .: Volume 1: Function Spaces and Fractional Calculus (V I Burenkov & S Samko); Asymptotic Decomposition (Methods of Small Parameters, Averaging Theory) (J A Dubinski); Integral Transforms and Applications (S Saitoh et al.); Analytic Functionals, Hyperfunctions and Generalized Functions (M Morimoto & H Komatsu); Geometric Function Theory (G Kohr & M Kohr); omplex Function Spaces (R Aulaskari & I Laine); Value Distribution Theory and Complex Dynamics (C C Yang); Clifford Analysis (K Gr...
Coverage in this proceedings volume includes robust multilevel and hierarchical preconditioning methods, applications for large scale computations and optimization of coupled engineering problems, and applications of metaheuristics to large-scale problems.
The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.
In recent years, an unprecedented interest in novel and revolutionary space missions has risen out of the advanced NASA and ESA programs. Astrophysicists, astronomers, space systems engineers, mathematicians and scientists have been cooperating to implement novel and ground-breaking space missions. Recent progress in mathematical dynamics has enabled development of specialised spacecraft orbits and propulsion systems. Recently, the concept of flying spacecraft in formation has gained a lot of interest within the community. These progresses constitute the background to a significant renaissance of research dealing with astrodynamics and its applications. Modern Astrodynamics is designed as a ...
This volume comprises selected papers presented at the Sixth International Conference on Difference Equations which was held at Augsburg, Germany. It covers all themes in the fields of discrete dynamical systems and ordinary and partial difference equations, classical and contemporary, theoretical and applied. It provides a useful reference text for graduates and researchers working in this area of mathematics.
Journal for the extra session, 1933/34, was issued with House Journal for that session; spine title: Journals Senate and House.
This text provides an approach to the study of perturbation and discretization effects on the long-time behaviour of dynamical and control systems. It analyzes the impact of time and space discretizations on asymptotically stable attracting sets, attractors and asumptotically controllable sets.