You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The two main themes of this book, logic and complexity, are both essential for understanding the main problems about the foundations of mathematics. Logical Foundations of Mathematics and Computational Complexity covers a broad spectrum of results in logic and set theory that are relevant to the foundations, as well as the results in computational complexity and the interdisciplinary area of proof complexity. The author presents his ideas on how these areas are connected, what are the most fundamental problems and how they should be approached. In particular, he argues that complexity is as important for foundations as are the more traditional concepts of computability and provability. Empha...
A much-needed monograph on the metamathematics of first-order arithmetic, paying particular attention to fragments of Peano arithmetic.
Contents: H. de Nivelle: Resolution Games and Non-Liftable Resolution Orderings. - M. Kerber, M. Kohlhase: A Tableau Calculus for Partial Functions. - G. Salzer: MUltlog: an Expert System for Multiple-valued Logics. - J. Krajícþek: A Fundamental Problem of Mathematical Logic. - P. Pudlák: On the Lengths of Proofs of Consistency. - A. Carbone: The Craig Interpolation Theorem for Schematic Systems. - I.A. Stewart: The Role of Monotonicity in Descriptive Complexity Theory. - R. Freund, L. Staiger: Numbers Defined by Turing Machines.
This book considers logical proof systems from the point of view of their space complexity. After an introduction to propositional proof complexity the author structures the book into three main parts. Part I contains two chapters on resolution, one containing results already known in the literature before this work and one focused on space in resolution, and the author then moves on to polynomial calculus and its space complexity with a focus on the combinatorial technique to prove monomial space lower bounds. The first chapter in Part II addresses the proof complexity and space complexity of the pigeon principles. Then there is an interlude on a new type of game, defined on bipartite graphs, essentially independent from the rest of the book, collecting some results on graph theory. Finally Part III analyzes the size of resolution proofs in connection with the Strong Exponential Time Hypothesis (SETH) in complexity theory. The book is appropriate for researchers in theoretical computer science, in particular computational complexity.
The 16 papers reflect some of the breakthroughs over the past dozen years in understanding whether or not logical inferences can be made in certain situations and what resources are necessary to make such inferences, questions that play a large role in computer science and artificial intelligence. They discuss such aspects as lower bounds in proof complexity, witnessing theorems and proof systems for feasible arithmetic, algebraic and combinatorial proof systems, and the relationship between proof complexity and Boolean circuit complexity. No index. Member prices are $47 for institutions and $35 for individuals. Annotation copyrighted by Book News, Inc., Portland, OR.
This book presents a detailed treatment of ordinal combinatorics of large sets tailored for independence results. It uses model theoretic and combinatorial methods to obtain results in proof theory, such as incompleteness theorems or a description of the provably total functions of a theory. In the first chapter, the authors first discusses ordinal combinatorics of finite sets in the style of Ketonen and Solovay. This provides a background for an analysis of subsystems of Peano Arithmetic as well as for combinatorial independence results. Next, the volume examines a variety of proofs of Gödel's incompleteness theorems. The presented proofs differ strongly in nature. They show various aspect...
This two-volume book contains selected papers from the international conference 'Groups 1993 Galway / St Andrews' which was held at University College Galway in August 1993. The wealth and diversity of group theory is represented in these two volumes. As with the Proceedings of the earlier 'Groups-St Andrews' conferences it is hoped that the articles in these Proceedings will, with their many references, prove valuable both to experienced researchers and also to new postgraduates interested in group theory.
This volume constitutes the thoroughly refereed proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2023. The 33 full papers presented in this volume were carefully reviewed and selected from a total of 116 submissions. The WG 2022 workshop aims to merge theory and practice by demonstrating how concepts from graph theory can be applied to various areas in computer science, or by extracting new graph theoretic problems from applications.
Propositional logic has been recognized throughout the centuries as one of the cornerstones of reasoning in philosophy and mathematics. Over time, its formalization into Boolean algebra was accompanied by the recognition that a wide range of combinatorial problems can be expressed as propositional satisfiability (SAT) problems. Because of this dual role, SAT developed into a mature, multi-faceted scientific discipline, and from the earliest days of computing a search was underway to discover how to solve SAT problems in an automated fashion. This book, the Handbook of Satisfiability, is the second, updated and revised edition of the book first published in 2009 under the same name. The handb...
Offers a self-contained work presenting basic ideas, classical results, current state of the art and possible future directions in proof complexity.