You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Best known outside the scientific community for the Nobel Prize in Physics he won in 1991, Pierre-Gilles de Gennes was exceptional amongst scientists for the breadth and depth of his contributions in multiple fields of physics. He was also much ahead of his time in his desire to break down barriers between scientific disciplines and between fundamental and applied science. He was equally unusual in his willingness to explain the nature and purpose of his work to society at large and to young people in particular. Laurence Pl(r)vert''s fascinating work retraces the influences and experiences that moulded this complex, charismatic, charming and eclectic genius. It follows him from his unconven...
This book, based on lectures given at the Polytechnic of Milan, gives a broad overview of the field of polymer dynamics. In these lectures the aim is to stress the fundamental concepts of the behaviour of polymers without drawing on the more advanced mathematical formalism which often obscures the natural elegance of the subject matter. Professor De Gennes is one of the most distinguished workers in the field of material science. Therefore this book will be welcomed by both the experienced researcher in the area and the interested layman. It will be of particular value to graduate students.
The first stage of the physics of long, flexible chains was pioneered by eminent scientists such as Debye, Kuhn, Kramers, and Flory, who formulated the basic ideas. In recent years, because of the availability of new experimental and theoretical tools, a second stage of the physics of polymers has evolved. In this book, a noted physicist explains the radical changes that have taken place in this exciting and rapidly developing field. Pierre-Gilles de Gennes points out the three developments that have been essential for recent advances in the study of large-scale conformations and motions of flexible polymers in solutions and melts. They are the advent of neutron-scattering experiments on sel...
Enthusiasts look forward to a time when tiny machines reassemble matter and process information but is their vision realistic? 'Soft Machines' explains why the nanoworld is so different to the macro-world that we are all familar with and shows how it has more in common with biology than conventional engineering.
This new edition of the classic text incorporates the many advances in knowledge about liquid crystals that have taken place since its initial publication in 1974. Entirely new chapters describe the types and properties of liquid crystals in terms of both recently discovered phases and current insight into the nature of local order and isotropic-to-nematic transition. There is an extensive discussion of the symmetrical, macroscopic, dynamic, and defective properties of smectics and columnar phases, with emphasis on order-of-magnitude considerations, all illustrated with numerous descriptions of experimental arrangements. The final chapter is devoted to phase transitions in smectics, including the celebrated analogy between smectic A and superconductors. This new version's topicality and breadth of coverage will ensure that it remains an indispensable guide for researchers and graduate students in mechanics and engineering, and in chemical, solid state, and statistical physics.
The study of capillarity is in the midst of a veritable explosion. What is offered here is not a comprehensive review of the latest research but rather a compendium of principles designed for the undergraduate student and for readers interested in the physics underlying these phenomena.
Liquid crystals had a controversial discovery at the end of the 19th century but were later accepted as a 'fourth state' of matter, and finally used throughout the world in modern displays and new materials. This book explains the fascinating science in accessible terms, and puts it into social, political, and historical perspectives.
Liquid crystals allow us to perform experiments that provide insight into fundamental problems of modern physics, such as phase transitions, frustration, elasticity, hydrodynamics, defects, growth phenomena, and optics (linear and non linear). This excellent volume meets the need for an up-to-date text on liquid crystals.Nematic and Cholesteric Liq
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. S...