You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The first non-electromagnetic messengers from space were discovered in the early 20th century, but it is only now that multimessenger astronomy is coming into its own. The aim of Multimessenger Astronomy in Practice is to aid an astronomer who is new to research in a particular area of multimessenger astronomy. Covering electromatic radiation from radio through to gamma-rays, and moving on to neutrino, cosmic-ray and gravitational wave astronomy, it gives the reader an overview of the celestial objects detected in each region, the unique methods used to measure them, as well as the principles and methods of data collection, calibration, reduction and analysis.
The study of exoplanets is one of the most vibrant fields of astrophysics today. Precise radial velocity (RV, or Doppler) measurements created the field by discovering the first exoplanets. Although employed for more than 30 years, RV measurements are still relevant today; when used with the transit method it provides the first characterization of exoplanets in terms of its mass, radius, and bulk density. These provide the first clues as to the internal structure of the exoplanet. With this text, Hatzes provides a deep understanding of the Doppler method, including how to achieve RV measurement precision, as well as the challenges, limitations, and potential of the technique. It also covers other aspects of the method such instrumentation, wavelength calibration, finding periodic signals in RV time series, signal interpretation, and Keplerian orbits. It's an essential reference for researchers and graduate students in the field of exoplanets, and additionally stellar spectroscopists and instrumentalists.
Planets come in many different sizes, and with many different compositions, orbiting our Sun and countless other stars. Understanding their properties and interactions requires an understanding of a diverse set of sub-fields, including orbital and atmospheric dynamics, geology, geophysics, and chemistry. This textbook provides a physics-based tour of introductory planetary science concepts for undergraduate students majoring in astronomy, planetary science, or related fields. It shows how principles and equations learned in introductory physics classes can be applied to study many aspects of planets, including dynamics, surfaces, interiors, and atmospheres. It also includes chapters on the discovery and characterization of extrasolar planets, and the physics of planet formation. Key Features Covers a wide range of planetary science topics at an introductory level Coherently links the fields of solar system science, exoplanetary science, and planet formation Each chapter includes homework questions Includes python templates for reproducing and customizing the figures in the book
This book is a compendium of key scientific questions, challenges, and opportunities across different areas of exoplanetary science. The field is currently experiencing rapid growth, and the book provides a front-row view of the advancements at the cutting-edge of the field. Each chapter contains a short exposition on the most important open questions, challenges, and opportunities in a specific area from the perspective of one or more top experts in the area. It provides a starting point for researchers, experts and non-experts alike, to obtain a quick overview of the forefront of exoplanetary science and a vision for the future of the field. Topics range from observational developments and...
Galaxy morphology is a long-standing subfield of astronomy, moving from visual qualifications to quantitative morphometrics. This book covers the descriptions developed by astronomers to describe the appearance of galaxies, primarily in optical, ultraviolet and near-infrared wavelengths.
Understanding planetary habitability is one of the major challenges of the current scientific era, and is a vast inter-disciplinary undertaking that combines planetary science, climate science, and stellar astrophysics. This book provides an overview of the many processes that influence the energy balance of planetary surface environments and control the sustainability of temperate conditions. These factors include such aspects as the influence of stars, the atmospheres and interiors or planets, and the orbital dynamics of planetary systems. Also described are the concepts behind the habitable zone, lessons learned from solar system data, and the vast opportunities that are provided by exoplanet discoveries, both now and into the future. Key Features: Summarises current exoplanet discoveries relevant to habitability Aimed at graduate students and researchers with an interest in exoplanets and astrobiology Describes the primary factors that influence the habitability of a planet Emphasises the need for in situ data in our solar system Covers the degeneracy of geosignatures and biosignatures
This book focuses on the most recent, relevant, comprehensive and significant aspects in the well-established multidisciplinary field Laboratory Astrophysics. It focuses on astrophysical environments, which include asteroids, comets, the interstellar medium, and circumstellar and circumplanetary regions. Its scope lies between physics and chemistry, since it explores physical properties of the gas, ice, and dust present in those systems, as well as chemical reactions occurring in the gas phase, the bare dust surface, or in the ice bulk and its surface. Each chapter provides the necessary mathematical background to understand the subject, followed by a case study of the corresponding system. The book provides adequate material to help interpret the observations, or the computer models of astrophysical environments. It introduces and describes the use of spectroscopic tools for laboratory astrophysics. This book is mainly addressed to PhD graduates working in this field or observers and modelers searching for information on ice and dust processes.
Parkinson's disease is a neurological disorder with cardinal motor signs of resting tremor, bradykinesia and lead-pipe rigidity. In addition, many patients display non-motor symptoms, including a diminished sensation of smell, gastrointestinal problems, various disorders of sleep and some cognitive impairment. These clinical features - particularly the motor signs - manifest after a progressive death of many dopaminergic neurones in the brain. Although currently available, conventional therapies can reduce the signs of the disease, the progression of this neuronal death has proved difficult to slow or stop, and the condition is relentlessly progressive. Hence, there is a real need to develop...
'Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote(R) and PowerPoint(R) formats.
Extreme Solar Particle Storms: The hostile Sun provides a consolidated review of our current understanding of extreme solar events, or black swans, that leave our technological society vulnerable. Written by experts at the forefront of the growing field of solar storms, this book will be of interest to students and researchers, as well as those curious about the threat that our Sun poses to the modern world.