You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book discusses the problems of complexity in industrial data, including the problems of data sources, causes and types of data uncertainty, and methods of data preparation for further reasoning in engineering practice. Each data source has its own specificity, and a characteristic property of industrial data is its high degree of uncertainty. The book also explores a wide spectrum of soft modeling methods with illustrations pertaining to specific cases from diverse industrial processes. In soft modeling the physical nature of phenomena may not be known and may not be taken into consideration. Soft models usually employ simplified mathematical equations derived directly from the data obtained as observations or measurements of the given system. Although soft models may not explain the nature of the phenomenon or system under study, they usually point to its significant features or properties.
Probability theory has been the only well-founded theory of uncertainty for a long time. It was viewed either as a powerful tool for modelling random phenomena, or as a rational approach to the notion of degree of belief. During the last thirty years, in areas centered around decision theory, artificial intelligence and information processing, numerous approaches extending or orthogonal to the existing theory of probability and mathematical statistics have come to the front. The common feature of those attempts is to allow for softer or wider frameworks for taking into account the incompleteness or imprecision of information. Many of these approaches come down to blending interval or fuzzy i...
Classical probability theory and mathematical statistics appear sometimes too rigid for real life problems, especially while dealing with vague data or imprecise requirements. These problems have motivated many researchers to "soften" the classical theory. Some "softening" approaches utilize concepts and techniques developed in theories such as fuzzy sets theory, rough sets, possibility theory, theory of belief functions and imprecise probabilities, etc. Since interesting mathematical models and methods have been proposed in the frameworks of various theories, this text brings together experts representing different approaches used in soft probability, statistics and data analysis.
Over the last forty years there has been a growing interest to extend probability theory and statistics and to allow for more flexible modelling of imprecision, uncertainty, vagueness and ignorance. The fact that in many real-life situations data uncertainty is not only present in the form of randomness (stochastic uncertainty) but also in the form of imprecision/fuzziness is but one point underlining the need for a widening of statistical tools. Most such extensions originate in a "softening" of classical methods, allowing, in particular, to work with imprecise or vague data, considering imprecise or generalized probabilities and fuzzy events, etc. About ten years ago the idea of establishi...
This book gathers contributions presented at the 7th International Conference on Soft Methods in Probability and Statistics SMPS 2014, held in Warsaw (Poland) on September 22-24, 2014. Its aim is to present recent results illustrating new trends in intelligent data analysis. It gives a comprehensive overview of current research into the fusion of soft computing methods with probability and statistics. Synergies of both fields might improve intelligent data analysis methods in terms of robustness to noise and applicability to larger datasets, while being able to efficiently obtain understandable solutions of real-world problems.
The analysis of experimental data resulting from some underlying random process is a fundamental part of most scientific research. Probability Theory and Statistics have been developed as flexible tools for this analyis, and have been applied successfully in various fields such as Biology, Economics, Engineering, Medicine or Psychology. However, traditional techniques in Probability and Statistics were devised to model only a singe source of uncertainty, namely randomness. In many real-life problems randomness arises in conjunction with other sources, making the development of additional "softening" approaches essential. This book is a collection of papers presented at the 2nd International Conference on Soft Methods in Probability and Statistics (SMPS’2004) held in Oviedo, providing a comprehensive overview of the innovative new research taking place within this emerging field.
The idea of soft computing emerged in the early 1990s from the fuzzy systems c- munity, and refers to an understanding that the uncertainty, imprecision and ig- rance present in a problem should be explicitly represented and possibly even - ploited rather than either eliminated or ignored in computations. For instance, Zadeh de?ned ‘Soft Computing’ as follows: Soft computing differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role model for soft computing is the human mind. Recently soft computing has, to some extent, become synonymous with a hybrid approach combining AI techniques includi...
This book presents the proceedings of the Fourth International Workshop on Soft Computing as Transdisciplinary Science and Technology (WSTST '05), May 25-27, 2005, Muroran, Japan. It brings together the original work of international soft computing/computational intelligence researchers, developers, practitioners, and users. This proceedings provide contributions to all areas of soft computing including intelligent hybrid systems, agent-based systems, intelligent data mining, decision support systems, cognitive and reactive distributed artificial intelligence (AI), internet modelling, human interface, and applications in science and technology.
The international conference Intelligent Information Processing and Web Mining IIS:IIPWM’05, organized in Gda?sk-Sobieszewo on 13–16th June, 2005, was a continuation of a long tradition of conferences on applications of Arti?cial Intelligence (AI) in Information Systems (IS), organized by the Institute of Computer Science of Polish Academy of Sciences in cooperation with other scienti?c and business institutions. The Institute itself is deeply engaged in research both in AI and IS and many scientists view it as a leading institution both in fundamental and - plied research in these areas in Poland. The originators of this conference series, Prof. M. D?browski and Dr. M. Michalewicz had i...
Uncertainty exists almost everywhere, except in the most idealized situations; it is not only an inevitable and ubiquitous phenomenon, but also a fundamental sci- ti?c principle. Furthermore, uncertainty is an attribute of information and, usually, decision-relevant information is uncertain and/or imprecise, therefore the abilities to handle uncertain information and to reason from incomplete knowledge are c- cial features of intelligent behaviour in complex and dynamic environments. By carefully exploiting our tolerance for imprecision and approximation we can often achieve tractability, robustness, and better descriptions of reality than traditional - ductive methods would allow us to obta...