You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach – in terms of Lie algebras – to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version. In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions. This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
The Marcel Grossmann Meetings are three-yearly forums that meet to discuss recent advances in gravitation, general relativity and relativistic field theories, emphasizing their mathematical foundations, physical predictions and experimental tests. These meetings aim to facilitate the exchange of ideas among scientists, to deepen our understanding of space-time structures, and to review the status of ongoing experiments and observations testing Einstein's theory of gravitation either from ground or space-based experiments. Since the first meeting in 1975 in Trieste, Italy, which was established by Remo Ruffini and Abdus Salam, the range of topics presented at these meetings has gradually wide...
“Neutrinos and Explosive Events in the Universe” brought together experts from diverse disciplines to offer a detailed view of the exciting new work in this part of High Energy Astrophysics. Sponsored by NATO as an Advanced Study Institute, and coordinated under the auspices of the International School of Cosmic Ray Astrophysics (14th biennial course), the ASI featured a full program of lectures and discussion in the ambiance of the Ettore Majorana Centre in Erice, Italy, including visits to the local Dirac and Chalonge museum collections as well as a view of the cultural heritage of southern Sicily. Enri- ment presentations on results from the Spitzer Infrared Space Telescope and the Or...
Gas at temperatures exceeding one million degrees is common in the Universe. Indeed it is likely that most of the gas in the Universe exists in intergalactic space in this form. Such highly-ionized gas, or plasma, is not restricted to the rarefied densities of intergalactic space, but is also found in clusters of galaxies, in galaxies themselves, in the expanding remnants of exploded stars and at higher densities in stars and the collapsed remains of stars up to the highest densities known, which occur in neutron stars. The abundant lower-Z elements, at least, in such gas are completely ionized and the gas acts as a highly conducting plasma. It is therefore subject to many cooperative phenom...
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.
The Adriatic Meetings have traditionally been conferences on the most - vanced status of science. They are one of the very few conferences in physics aiming at a very broad participation of young and experienced researchers with di?erent backgrounds in particle physics. Particle physics has grown into a highly multi-faceted discipline over the sixty years of its existence, mainly because of two reasons: Particle physics as an experimental science is in need of large-scale laboratory set-ups, involving typically collaborations of several hundreds or even thousands of researchers and technicians with the most diverse expertise. This forces particle physics, being one of the most fundamental di...
A review of the scientific evidence on the effects of cannabinoids on brain and behavioral functioning, with an emphasis on potential therapeutic use. The cannabis plant has been used for recreational and medicinal purposes for more than 4,000 years, but the scientific investigation into its effects has only recently yielded useful results. In this book, Linda Parker offers a review of the scientific evidence on the effects of cannabinoids on brain and behavioral functioning, with an emphasis on potential therapeutic uses. Parker describes the discovery of tetrahydocannbinol (THC), the main psychoactive component of cannabis, and the further discovery of cannabinoid receptors in the brain. S...
Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we di...