You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and indus...
This book provides the reader with an introduction to the physics of complex plasmas, a discussion of the specific scientific and technical challenges they present and an overview of their potential technological applications. Complex plasmas differ from conventional high-temperature plasmas in several ways: they may contain additional species, including nano meter- to micrometer-sized particles, negative ions, molecules and radicals and they may exhibit strong correlations or quantum effects. This book introduces the classical and quantum mechanical approaches used to describe and simulate complex plasmas. It also covers some key experimental techniques used in the analysis of these plasmas...
We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and indus...
Providing critical reviews of recent advances in photochemistry including organic and computational aspects, the latest volume in the Series reflects the current interests in this area. It also includes a series of highlights on molecular devices, global artificial photosynthesis, silicon nanoparticles, solar energy conversion, organic heterogeneous photocatalysis and photochemistry in surface-water environments. Volume 44 of the annual Specialist Periodical Reports: Photochemistry is essential reading for anyone wishing to keep up with the literature on photochemistry and its applications.
Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends discusses the most important current applications of nanoparticles and architecture nanostructures in a comprehensive, detailed manner. The book covers major applications of nanoparticles and architecture nanostructures, taking into account their unusual shapes and high surface areas. In particular, coverage is given to applications in aerospace, automotive, batteries, sensors, smart textile design, energy conversion, color imaging, printing, computer chips, medical implants, pharmacy, cosmetics, and more. In addition, the book discusses the future of research in these areas. This is a...
Nanostructured electrode materials have exhibited unrivaled electrochemical properties in creating elite supercapacitors. Morphology Design Paradigm for Supercapacitors presents the latest advances in the improvement of supercapacitors, a result of the incorporation of nanomaterials into the design – from zero-dimensional to three-dimensional, and microporous to mesoporous. The book includes a comprehensive description of capacitive practices at the levels of sub-atomic and nanoscales. These have the ability to enhance device performance for an extensive assortment of potential applications, including consumer electronics, wearable gadgets, hybrid electric vehicles, stationary and industri...
Since the late 20th century, graphene-a one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice-has garnered appreciable attention as a potential next-generation electronic material due to its exceptional properties. These properties include high current density, ballistic transport, chemical inertness,
Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-luminescence, field-effect transistor, and magnetic effect. The book: Explains how to utilize the unique p...
Presents technologies and key concepts to produce suitable smart materials and intelligent structures for sensing, information and communication technology, biomedical applications (drug delivery, hyperthermia therapy), self-healing, flexible memories and construction technologies. Novel developments of environmental friendly, cost-effective and scalable production processes are discussed by experts in the field.
The use of nanomaterials for remediation efforts has been overlooked even though they present interesting characteristics as remediators. This new book provides a valuable overview of low-cost and eco-friendly green synthesized nanomaterials as advantageous technology that promotes efficient nanoremediation of environmental pollution for the restoration of polluted areas. It discusses the potential of nanomaterials, specifically green synthesized nanomaterials, as a practical and efficient solution toward sustainability. The book details the advantages of green nanomaterials when compared to conventional physicochemical methods, such as avoiding the use of harmful reagents and reducing toxic waste production. The book addresses themes such as contaminants associated with environmental pollution and the threats to humans; nanoremediation strategies that use microbes, plants, or amendments; and nanoparticles as tools for nanoremediation and their advantageous characteristics.