You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This volume covers a wide range of areas in mathematics and mathematics education. There is emphasis on applied mathematics, including partial differential equations, dynamical systems, and difference equations. Other areas represented include algebra and number theory, statistics, and issues in mathematics education.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
Integrating both classical and modern treatments of difference equations, this book contains the most updated and comprehensive material on stability, Z-transform, discrete control theory, asymptotic theory, continued fractions and orthogonal polynomials. While the presentation is simple enough for use by advanced undergraduates and beginning graduates in mathematics, engineering science, and economics, it will also be a useful reference for scientists and engineers interested in discrete mathematical models. The text covers a large set of applications in a variety of disciplines, including neural networks, feedback control, Markov chains, trade models, heat transfer, propagation of plants, epidemic models and host-parasitoid systems, with each section rounded off by an extensive and highly selected set of exercises.
The recent surge in research activity in difference equations and applications has been driven by the wide applicability of discrete models to such diverse fields as biology, engineering, physics, economics, chemistry, and psychology. The 68 papers that make up this book were presented by an international group of experts at the Second International Conference on Difference Equations, held in Veszprém, Hungary, in August, 1995. Featuring contributions on such topics as orthogonal polynomials, control theory, asymptotic behavior of solutions, stability theory, special functions, numerical analysis, oscillation theory, models of vibrating string, models of chemical reactions, discrete competition systems, the Liouville-Green (WKB) method, and chaotic phenomena, this volume offers a comprehensive review of the state of the art in this exciting field.
This self-contained, practical, entry-level text integrates the basic principles of applied mathematics, applied probability, and computational science for a clear presentation of stochastic processes and control for jump diffusions in continuous time. The author covers the important problem of controlling these systems and, through the use of a jump calculus construction, discusses the strong role of discontinuous and nonsmooth properties versus random properties in stochastic systems.
Contains papers from the 7th International Conference on Difference Equations held at Hunan University (Changsa, China), a satellite conference of ICM2002 Beijing. This book includes articles that cover stability, chaos, symmetries, boundary value problems and bifurcations for discrete dynamical systems, and difference-differential equations.
Biomedical Informatics is now indispensible in modern healthcare, and the field covers a very broad spectrum of research and application outcomes, ranging from cell to population, and including a number of technologies such as imaging, sensors, and biomedical equipment, as well as management and organizational subjects. This book presents 65 full papers and two keynote speeches from the 2017 edition of the International Conference on Informatics, Management, and Technology in Healthcare (ICIMTH 2017), held in Athens, Greece in July 2017. The papers are grouped in three chapters, and cover a wide range of topics, reflecting the current scope of Biomedical Informatics. In essence, Biomedical Informatics empowers the transformation of healthcare, and the book will be of interest to researchers, providers and healthcare practitioners alike.
A must-read for mathematicians, scientists and engineers who want to understand difference equations and discrete dynamics Contains the most complete and comprehenive analysis of the stability of one-dimensional maps or first order difference equations. Has an extensive number of applications in a variety of fields from neural network to host-parasitoid systems. Includes chapters on continued fractions, orthogonal polynomials and asymptotics. Lucid and transparent writing style
This volume covers topics ranging from pure and applied mathematics to pedagogical issues in mathematics. There are papers in mathematical biology, differential equations, difference equations, dynamical systems, orthogonal polynomials, topology, calculus reform, algebra, and numerical analysis. Most of the papers include new, interesting results that are at the cutting edge of the respective subjects. However, there are some papers of an expository nature.