You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Based on the proceedings of the conference held at the University of Iowa, in honour and celebration of the mathematician T.G. Ostrom's 80th birthday, this text focuses on finite geometries as well as topological geometries in the infinite case, some of which originate with ideas of finite geometric objects. It includes information about flocks of quadratic cones and related geometric and combinatorial structures.
Contains the proceedings of a conference on Finite Geometries, Groups, and Computation that took place in September 4-9, 2004, at Pingree Park, Colorado (a campus of Colorado State University). This work serves to introduce both students and the mathematical community to the important topics and gives an overview of developments in these fields.
The explanation of the formal duality of Kerdock and Preparata codes is one of the outstanding results in the field of applied algebra in the last few years. This result is related to the discovery of large sets of quad riphase sequences over Z4 whose correlation properties are better than those of the best binary sequences. Moreover, the correlation properties of sequences are closely related to difference properties of certain sets in (cyclic) groups. It is the purpose of this book to illustrate the connection between these three topics. Most articles grew out of lectures given at the NATO Ad vanced Study Institute on "Difference sets, sequences and their correlation properties". This workshop took place in Bad Windsheim (Germany) in August 1998. The editors thank the NATO Scientific Affairs Division for the generous support of this workshop. Without this support, the present collection of articles would not have been realized.
This series is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.
Uses the combinatorics and representation theory to construct and study important families of Lie algebras and Weyl groups.
description not available right now.