You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book contains the proceedings of the AMS Special Session, in honor of S. K. Jain's 80th birthday, on Categorical, Homological and Combinatorial Methods in Algebra held from March 16–18, 2018, at Ohio State University, Columbus, Ohio. The articles contained in this volume aim to showcase the current state of art in categorical, homological and combinatorial aspects of algebra.
This volume contains the proceedings of the Virtual Conference on Noncommutative Rings and their Applications VII, in honor of Tariq Rizvi, held from July 5–7, 2021, and the Virtual Conference on Quadratic Forms, Rings and Codes, held on July 8, 2021, both of which were hosted by the Université d'Artois, Lens, France. The articles cover topics in commutative and noncommutative algebra and applications to coding theory. In some papers, applications of Frobenius rings, the skew group rings, and iterated Ore extensions to coding theory are discussed. Other papers discuss classical topics, such as Utumi rings, Baer rings, nil and nilpotent algebras, and Brauer groups. Still other articles are devoted to various aspects of the elementwise study for rings and modules. Lastly, this volume includes papers dealing with questions in homological algebra and lattice theory. The articles in this volume show the vivacity of the research of noncommutative rings and its influence on other subjects.
The papers in this volume contain results in active research areas in the theory of rings and modules, including non commutative and commutative ring theory, module theory, representation theory, and coding theory.
The study of noncommutative rings is a major area in modern algebra. The structure theory of noncommutative rings was originally concerned with three parts: The study of semi-simple rings; the study of radical rings; and the construction of rings with given radical and semi-simple factor rings. Recently, this has extended to many new parts: The zero-divisor theory, containing the study of coefficients of zero-dividing polynomials and the study of annihilators over noncommutative rings, that is related to the Köthe's conjecture; the study of nil rings and Jacobson rings; the study of applying ring-theoretic properties to modules; representation theory; the study of relations between algebrai...
This volume consists of contributions by speakers at a Conference on Algebra and its Applications that took place in Athens, Ohio, in March of 2005. It provides a snapshot of the diversity of themes and applications that interest algebraists today. The papers in this volume include some of the latest results in the theory of modules, noncommutative rings, representation theory, matrix theory, linear algebra over noncommutative rings, cryptography, error-correcting codes over finite rings, and projective-geometry codes, as well as expository articles that will provide algebraists and other mathematicians, including graduate students, with an accessible introduction to areas outside their own expertise. The book will serve both the specialist looking for the latest result and the novice seeking an accessible reference for some of the ideas and results presented here.
This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.
This volume contains the proceedings of the International Conference on Algebra, Discrete Mathematics and Applications, held from December 9–11, 2017, at Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (Maharashtra), India. Contemporary topics of research in algebra and its applications to algebraic geometry, Lie groups, algebraic combinatorics, and representation theory are covered. The articles are devoted to Leavitt path algebras, roots of elements in Lie groups, Hilbert's Nullstellensatz, mixed multiplicities of ideals, singular matrices, rings of integers, injective hulls of modules, representations of linear, symmetric groups and Lie algebras, the algebra of generic matrices and almost injective modules.
This book contains the proceedings of the Fifth International Conference on Noncommutative Rings and their Applications, held from June 12–15, 2017, at the University of Artois, Lens, France. The papers are related to noncommutative rings, covering topics such as: ring theory, with both the elementwise and more structural approaches developed; module theory with popular topics such as automorphism invariance, almost injectivity, ADS, and extending modules; and coding theory, both the theoretical aspects such as the extension theorem and the more applied ones such as Construction A or Reed–Muller codes. Classical topics like enveloping skewfields, weak Hopf algebras, and tropical algebras are also presented.
Nonassociative mathematics is a broad research area that studies mathematical structures violating the associative law x(yz)=(xy)z. The topics covered by nonassociative mathematics include quasigroups, loops, Latin squares, Lie algebras, Jordan algebras, octonions, racks, quandles, and their applications. This volume contains the proceedings of the Fourth Mile High Conference on Nonassociative Mathematics, held from July 29–August 5, 2017, at the University of Denver, Denver, Colorado. Included are research papers covering active areas of investigation, survey papers covering Leibniz algebras, self-distributive structures, and rack homology, and a sampling of applications ranging from Yang-Mills theory to the Yang-Baxter equation and Laver tables. An important aspect of nonassociative mathematics is the wide range of methods employed, from purely algebraic to geometric, topological, and computational, including automated deduction, all of which play an important role in this book.
For thirty years, the biennial international conference AGC T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers to Marseille to build connections between arithmetic geometry and its applications, originally highlighting coding theory but more recently including cryptography and other areas as well. This volume contains the proceedings of the 16th international conference, held from June 19–23, 2017. The papers are original research articles covering a large range of topics, including weight enumerators for codes, function field analogs of the Brauer–Siegel theorem, the computation of cohomological invariants of curves, the trace distributions of algebraic groups, and applications of the computation of zeta functions of curves. Despite the varied topics, the papers share a common thread: the beautiful interplay between abstract theory and explicit results.