You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, "wedge") product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.
In this book, I discuss the long-standing technical and conceptual problems arising within the statistical framework describing models of cosmological inflation, known collectively as the "measure problem" in multiverse cosmology. After reviewing various existing approaches and mathematical techniques developed in the past two decades for studying these issues, I describe a new proposal for a measure in the multiverse, called the reheating-volume (RV) measure. The RV measure is based on approximating an infinite multiverse by a family of progressively larger but finite multiverses. I give a detailed description of the new measure and its applications to generic models of eternal inflation of random-walk type and to landscape scenarios. The RV prescription is formulated differently for scenarios with eternal inflation of the random walk type and for landscape scenarios. I derive analytic formulas for RV-regulated probability distributions that is suitable for numerical computations.
The first textbook on this important topic, for graduate students and researchers in particle and condensed matter physics.
Some 25 years after the birth of inflationary cosmology, this volume sets out to provide both an authoritative and pedagogical introduction and review of the current state of the field. Readers learn about the arguments supporting the many different scenarios of cosmic inflation. Articles are written by eminent scientists, many of whom have made pioneering contributions to the field of inflationary cosmology.
This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. to facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. in particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.
This book, first published in 2007, is an introductory textbook on quantum field theory in gravitational backgrounds intended for undergraduate and beginning graduate students in the fields of theoretical astrophysics, cosmology, particle physics, and string theory. The book covers the basic (but essential) material of quantization of fields in an expanding universe and quantum fluctuations in inflationary spacetime. It also contains a detailed explanation of the Casimir, Unruh, and Hawking effects, and introduces the method of effective action used for calculating the back-reaction of quantum systems on a classical external gravitational field. The broad scope of the material covered will provide the reader with a thorough perspective of the subject. Every major result is derived from first principles and thoroughly explained. The book is self-contained and assumes only a basic knowledge of general relativity. Exercises with detailed solutions are provided throughout the book.
Philosophers debate the ideas and implications of one of the most important contemporary works in the philosophy of science, David Albert’s Time and Chance. In the twenty-odd years since its publication, David Albert’s Time and Chance has been recognized as one of the most significant contemporary contributions to the philosophy of science. Here, philosophers and physicists explore the implications of Albert’s arguments and debate his solutions to some of the most intractable problems in theoretical physics. Albert has attempted to make sense of the tension between our best scientific pictures of the fundamental physical structure of the world and our everyday empirical experience of t...
This Element offers an introduction to selected philosophical issues that arise in contemporary particle physics, aimed at philosophers who have limited prior exposure to quantum field theory. One the one hand, it critically surveys philosophical work on the representation of particles in quantum field theory, the formal machinery and conceptual implications of renormalization and renormalization group methods, and ontological and methodological questions raised by the use of effective field theory techniques in particle physics. On the other, it identifies topics in particle physics that have not yet received philosophical attention and sketches avenues for philosophical analysis of those topics. The primary aim of the Element is to provide philosophers of physics with an entry point into the literature on the philosophy of particle physics and identify interesting directions for future research for students and researchers alike.