You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book introduces best practices in longitudinal data analysis at intermediate level, with a minimum number of formulas without sacrificing depths. It meets the need to understand statistical concepts of longitudinal data analysis by visualizing important techniques instead of using abstract mathematical formulas. Different solutions such as multiple imputation are explained conceptually and consequences of missing observations are clarified using visualization techniques. Key features include the following: Provides datasets and examples online Gives state-of-the-art methods of dealing with missing observations in a non-technical way with a special focus on sensitivity analysis Conceptualises the analysis of comparative (experimental and observational) studies It is the ideal companion for researchers and students in epidemiological, health, and social and behavioral sciences working with longitudinal studies without a mathematical background.
Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the s...
This book provides the tools, the methods, and the theory to meet the challenges of contemporary data science applied to geographic problems and data. In the new world of pervasive, large, frequent, and rapid data, there are new opportunities to understand and analyze the role of geography in everyday life. Geographic Data Science with Python introduces a new way of thinking about analysis, by using geographical and computational reasoning, it shows the reader how to unlock new insights hidden within data. Key Features: ● Showcases the excellent data science environment in Python. ● Provides examples for readers to replicate, adapt, extend, and improve. ● Covers the crucial knowledge needed by geographic data scientists. It presents concepts in a far more geographic way than competing textbooks, covering spatial data, mapping, and spatial statistics whilst covering concepts, such as clusters and outliers, as geographic concepts. Intended for data scientists, GIScientists, and geographers, the material provided in this book is of interest due to the manner in which it presents geospatial data, methods, tools, and practices in this new field.
Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications (2nd edition) presents an updated introduction to linear modeling using the generalized linear mixed model (GLMM) as the overarching conceptual framework. For students new to statistical modeling, this book helps them see the big picture – linear modeling as broadly understood and its intimate connection with statistical design and mathematical statistics. For readers experienced in statistical practice, but new to GLMMs, the book provides a comprehensive introduction to GLMM methodology and its underlying theory. Unlike textbooks that focus on classical linear models or generalized linear models or mixed models, t...
Spatio-Temporal Methods in Environmental Epidemiology with R, like its First Edition, explores the interface between environmental epidemiology and spatio-temporal modeling. It links recent developments in spatio-temporal theory with epidemiological applications. Drawing on real-life problems, it shows how recent advances in methodology can assess the health risks associated with environmental hazards. The book's clear guidelines enable the implementation of the methodology and estimation of risks in practice. New additions to the Second Edition include: a thorough exploration of the underlying concepts behind knowledge discovery through data; a new chapter on extracting information from dat...
Provides accessible introduction to large sample theory with moving alternatives Elucidates mathematical concepts using simple practical examples Includes problem sets and solutions for each chapter Uses the moving alternative formulation developed by LeCam but requires a minimum of mathematical prerequisites
Designed for a one-semester advanced undergraduate or graduate statistical theory course, Statistical Theory: A Concise Introduction, Second Edition clearly explains the underlying ideas, mathematics, and principles of major statistical concepts, including parameter estimation, confidence intervals, hypothesis testing, asymptotic analysis, Bayesian inference, linear models, nonparametric statistics, and elements of decision theory. It introduces these topics on a clear intuitive level using illustrative examples in addition to the formal definitions, theorems, and proofs. Based on the authors’ lecture notes, the book is self-contained, which maintains a proper balance between the clarity a...
Issue ownership theory is a tale of two actors. On the one hand, it theorizes how parties compete with each other in their struggle for votes. On the other hand, issue ownership is about the citizen. It claims that voters are more likely to support a party if they think it is competent to handle issues they care about. This book provides unique insights into the undertheorized and understudied links between party competence and the vote. It argues that issue ownership voting (or competence-based voting) consists of three assumptions: First, voters are primarily interested in having issues handled by a competent party. Unlike in other issue voting models this implies that voters are reluctant...
Missing data form a problem in every scientific discipline, yet the techniques required to handle them are complicated and often lacking. One of the great ideas in statistical science—multiple imputation—fills gaps in the data with plausible values, the uncertainty of which is coded in the data itself. It also solves other problems, many of which are missing data problems in disguise. Flexible Imputation of Missing Data is supported by many examples using real data taken from the author's vast experience of collaborative research, and presents a practical guide for handling missing data under the framework of multiple imputation. Furthermore, detailed guidance of implementation in R usin...
Hugely popular textbook on survival analysis for graduate students of statistics and biostatistics, mainly due to its accessibility and breadth of examples. This is a standard course on graduate programs in biostatistics and statistics, and this is one of the most popular textbooks. Updated with modern methods covering Bayesian survival analysis, joint models, and more.