You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Provides broad insights into problems of coding control algorithms on a DSP platform. - Includes a set of Simulink simulation files (source codes) which permits readers to envisage the effects of control solutions on the overall motion control system. -bridges the gap between control analysis and industrial practice.
Frequency control as a major function of automatic generation control is one of the important control problems in electric power system design and operation, and is becoming more signi?cant today because of the increasing size, changing structure, emerging new uncertainties, environmental constraints and the complexity of power systems. In the last two decades, many studies have focused on damping control and vo- age stability and the related issues, but there has been much less work on the power system frequency control analysis and synthesis. While some aspects of frequency control have been illustrated along with individual chapters, many conferences and technical papers, a comprehensive ...
Applied Mathematics for Restructured Electric Power Systems: Optimization, Control, and Computational Intelligence consists of chapters based on work presented at a National Science Foundation workshop organized in November 2003. The theme of the workshop was the use of applied mathematics to solve challenging power system problems. The areas included control, optimization, and computational intelligence. In addition to the introductory chapter, this book includes 12 chapters written by renowned experts in their respected fields. Each chapter follows a three-part format: (1) a description of an important power system problem or problems, (2) the current practice and/or particular research ap...
Robust Control in Power Systems deals with the applications of new techniques in linear system theory to control low frequency oscillations in power systems. The book specifically focuses on the analysis and damping of inter-area oscillations in the systems which are in the range of 0.2-1 Hz. The damping control action is injected through high power electronic devices known as flexible AC transmission system (FACTS) controllers. Three commonly used FACTS controllers: controllable series capacitors (CSCs) controllable phase shifters (CPSs) and static var compensators (SVCs) have been used in this book to control the inter-area oscillations. The overview of linear system theory from the perspe...
Power Quality Enhancement Using Custom Power Devices considers the structure, control and performance of series compensating DVR, the shunt DSTATCOM and the shunt with series UPQC for power quality improvement in electricity distribution. Also addressed are other power electronic devices for improving power quality in Solid State Transfer Switches and Fault Current Limiters. Applications for these technologies as they relate to compensating busses supplied by a weak line and for distributed generation connections in rural networks, are included. In depth treatment of inverters to achieve voltage support, voltage balancing, harmonic suppression and transient suppression in realistic network environments are also covered. New material on the potential for shunt and series compensation which emphasizes the importance of control design has been introduced.
HVDC and FACTS Controllers: Applications of Static Converters in Power Systems focuses on the technical advances and developments that have taken place in the past ten years or so in the fields of High Voltage DC transmission and Flexible AC transmission systems. These advances (in HVDC transmission and FACTS) have added a new dimension to power transmission capabilities. The book covers a wide variety of topics, some of which are listed below: -Current Source and Voltage Source Converters, -Synchronization Techniques for Power Converters, -Capacitor Commutated Converters, -Active Filters, -Typical Disturbances on HVDC Systems, -Simulation Techniques, -Static Var Compensators based on Chain Link Converters, -Advanced Controllers, -Trends in Modern HVDC. In addition to EHV transmission, HVDC technology has impacted on a number of other areas as well. As an example, a chapter dealing with HVDC Light applications is included providing recent information on both on-shore and off-shore applications of wind farms.
The study of complex dynamic processes governed by nonlinear and nonstationary characteristics is a problem of great importance in the analysis and control of power system oscillatory behavior. Power system dynamic processes are highly random, nonlinear to some extent, and intrinsically nonstationary even over short time intervals as in the case of severe transient oscillations in which switching events and control actions interact in a complex manner. Phenomena observed in power system oscillatory dynamics are diverse and complex. Measured ambient data are known to exhibit noisy, nonstationary fluctuations resulting primarily from small magnitude, random changes in load, driven by low-scale...
Voltage Stability is a relatively recent and challenging problem in Power Systems Engineering. It is gaining in importance as the trend of operating power systems closer to their limits continues to increase. Voltage Stability of Electric Power Systems presents a clear description of voltage instability and collapse phenomena. It proposes a uniform and coherent theoretical framework for analysis and covers state-of-the-art methods. The book describes practical methods that can be used for voltage security assessment and offers a variety of examples.
In the aftermath of the wave of blackouts that affected US, UK and mainland Europe utilities in 2003 and 2004, renewed attention has been focused on maintaining the highest level of reliability and security in the operation of power systems. The lack of adequate transmission infrastructure as well as real-time tools aimed at detecting and alarming system conditions have also been highlighted. In this context, the need to assess stability and predict the risk of blackout in real-time has become particularly relevant. Early work in this field documented in technical papers published throughout the 1990s and early 2000s underlined the importance of performing stability assessment in real-time. ...
This book provides comprehensive details on continuation power flow, and reviews concepts in bifurcation theory and continuation methods for assessing power system voltage stability. The author proposes a uniform framework that provides computational approaches for both short-term and long-term voltage stability phenomena. Readers can access the author’s web-based simulation tools, which are based on the advice in this book, to simulate tests of systems up to the size of 200 busses.