You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The aim here is to provide an introduction to the mathematical theory of infinite dimensional dynamical systems by focusing on a relatively simple - yet rich - class of examples, delay differential equations. This textbook contains detailed proofs and many exercises, intended both for self-study and for courses at graduate level, as well as a reference for basic results. As the subtitle indicates, this book is about concepts, ideas, results and methods from linear functional analysis, complex function theory, the qualitative theory of dynamical systems and nonlinear analysis. The book provides the reader with a working knowledge of applied functional analysis and dynamical systems.
On November 12-14, 1997 a workshop was held at the Vrije Universiteit Amsterdam on the occasion of the sixtieth birthday ofM. A. Kaashoek. The present volume contains the proceedings of this workshop. The workshop was attended by 44 participants from all over the world: partici pants came from Austria, Belgium, Canada, Germany, Ireland, Israel, Italy, The Netherlands, South Africa, Switzerland, Ukraine and the USA. The atmosphere at the workshop was very warm and friendly. There where 21 plenary lectures, and each lecture was followed by a lively discussion. The workshop was supported by: the Vakgroep Wiskunde of the Vrije Univer siteit, the department of Mathematics and Computer Science of ...
This book is devoted to some topical problems and applications of operator theory and its interplay with modern complex analysis. It consists of 20 selected survey papers that represent updated (mainly plenary) addresses to the IWOTA 2000 conference held at Bordeaux from June 13 to 16, 2000. The main subjects of the volume include: - spectral analysis of periodic differential operators and delay equations, stabilizing controllers, Fourier multipliers; - multivariable operator theory, model theory, commutant lifting theorems, coisometric realizations; - Hankel operators and forms; - operator algebras; - the Bellman function approach in singular integrals and harmonic analysis, singular integral operators and integral representations; - approximation in holomorphic spaces. These subjects are unified by the common "operator theoretic approach" and the systematic use of modern function theory techniques.
Theoretical advances in dynamical-systems theory and their applications to pattern-forming processes in the sciences and engineering are discussed in this volume that resulted from the conference Patterns in Dynamics held in honor of Bernold Fiedler, in Berlin, July 25-29, 2016.The contributions build and develop mathematical techniques, and use mathematical approaches for prediction and control of complex systems. The underlying mathematical theories help extract structures from experimental observations and, conversely, shed light on the formation, dynamics, and control of spatio-temporal patterns in applications. Theoretical areas covered include geometric analysis, spatial dynamics, spectral theory, traveling-wave theory, and topological data analysis; also discussed are their applications to chemotaxis, self-organization at interfaces, neuroscience, and transport processes.
In the mathematical description of a physical or biological process, it is a common practice \0 assume that the future behavior of Ihe process considered depends only on the present slate, and therefore can be described by a finite sct of ordinary diffe rential equations. This is satisfactory for a large class of practical systems. However. the existence of lime-delay elements, such as material or infonnation transport, of tcn renders such description unsatisfactory in accounting for important behaviors of many practical systems. Indeed. due largely to the current lack of effective metho dology for analysis and control design for such systems, the lime-delay elements arc often either neglected or poorly approximated, which frequently results in analysis and simulation of insufficient accuracy, which in turns leads to poor performance of the systems designed. Indeed, it has been demonstrated in the area of automatic control that a relatively small delay may lead to instability or significantly deteriora ted perfonnances for the corresponding closed-loop systems.
Much of the importance of mathematics lies in its ability to provide theories which are useful in widely different fields of endeavour. A good example is the large and amorphous body of knowledge known as the theory of linear operators or operator theory, which came to life about a century ago as a theory to encompass properties common to matrix, differential, and integral operators. Thus, it is a primary purpose of operator theory to provide a coherent body of knowledge which can explain phenomena common to the enormous variety of problems in which such linear operators play a part. The theory is a vital part of functional analysis, whose methods and techniques are one of the major advances of twentieth century mathematics and now play a pervasive role in the modeling of phenomena in probability, imaging, signal processing, systems theory, etc, as well as in the more traditional areas of theoretical physics and mechanics. This book is based on lectures presented at a meeting on operator theory and its applications held at the Fields Institute in 1994.
This volume contains survey and research articles by some of the leading researchers in mathematical systems theory - a vibrant research area in its own right. Many authors have taken special care that their articles are self-contained and accessible also to non-specialists.
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences
This volume contains the proceedings of a Leiden Workshop on Dynamical Systems and their accompanying Operator Structures which took place at the Lorentz Center in Leiden, The Netherlands, on July 21-25, 2008. These papers offer a panorama of selfadjoint and non-selfadjoint operator algebras associated with both noncommutative and commutative (topological) dynamical systems and related subjects. Papers on general theory, as well as more specialized ones on symbolic dynamics and complex dynamical systems, are included.