You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Advances in synthesis of metallic, oxidic and composite powders were presented via the following methods: ultrasound-assisted leaching¸ ultrasonic spray pyrolysis, hydrogenation, dehydrogenation, ball milling, molten salt electrolysis, galvanostatic electrolysis, hydrogen reduction, thermochemical decomposition, inductively coupled thermal plasma, precipitation and high pressure carbonation in an autoclave. This Special Issue contains 17 papers from Europe, Asia, Australia, South Africa and the Balkans. The synthesis was focused on metals: Co, Cu; Re; oxides: ZnO, MgO, SiO2; V2O5; sulfides: MoS2, core shell material: Cu-Al2O3, Pt/TiO2; compounds: Ca0.75Ce0.25ZrTi2O7, Mo5Si3, Ti6Al4V. The environmentally friendly strategies were presented at the carbonation of olivine, treatment of acid mine drainage water and production of vanadium oxide.
Leaching is a primary extractive operation in hydrometallurgical processing, by which a metal of interest is transferred from naturally occurring minerals into an aqueous solution. In essence, it involves the selective dissolution of valuable minerals, where the ore, concentrate, or matte is brought into contact with an active chemical solution known as a leach solution. Currently, the hydrometallurgical processes have a great number of applications, not only in the mining sector—in particular, for the recovery of precious metals—but also in the environmental sector, for the recovery of toxic metals from wastes of various types, and their reuse as valuable metals, after purification. The...
The development of new technologies and the increasing demand for mineral resources from emerging countries are responsible for significant tensions in the pricing of non-ferrous metals. Some metals have become strategic and critical because they are used in many technological applications such as flat panel TVs (indium), solar panel cells (indium), lithium-ion batteries for electric vehicles (lithium, cobalt), magnets (rare earth elements, such as neodymium and dysprosium), scintillators (rare earths), and aviation and medical applications (titanium); their availabilities remain limited. The secured supply of these metals is crucial to continue producing and exporting these technologies, an...
The high demand for advanced metallic materials raises the need for an extensive recycling of metals and such a sustainable use of raw materials. "Sustainable Utilization of Metals - Processing, Recovery and Recycling" comprises the latest scientific achievements in efficient production of metals and such addresses sustainable resource use as part of the circular economy strategy. This policy drives the present contributions, aiming on the recirculation of EoL-streams such as Waste Electric and Electronic Equipment (WEEE), multi-metal alloys or composite materials back into metal production. This needs a holistic approach, resulting in the maximal avoidance of waste. Considering both aspects...
Hydrometallurgy of Rare Earths: Extraction and Separation provides the basic knowledge for rare earth extraction and separation, including flow sheet selection criteria and related technology. The book includes the latest research findings on all rare earth separation processes, methods of controlling operation costs, and strategies that help lower wastewater and waste solid discharge. It discusses many real process parameters and actual situations in rare earth separation plants, also examining the basic principles, technologies, process parameters and advances and achievements in the area of rare earth extraction and separation. In addition, the book covers extraction separation theory as ...