You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Don't fly blind. See how the power of experiments works for you. When it comes to improving customer experiences, trying out new business models, or developing new products, even the most experienced managers often get it wrong. They discover that intuition, experience, and big data alone don't work. What does? Running disciplined business experiments. And what if companies roll out new products or introduce new customer experiences without running these experiments? They fly blind. That's what Harvard Business School professor Stefan Thomke shows in this rigorously researched and eye-opening book. It guides you through best practices in business experimentation, illustrates how these practi...
Organophosphorus Chemistry provides a comprehensive and critical review of the recent literature. Coverage includes phosphines and their chalcogenides, phosphonium salts, low coordination number phosphorus compounds, penta- and hexa- coordinated compounds, quinquevalent phosphorus acids, nucleotides and nucleic acids, ylides and related compounds, phosphazenes and the application of physical methods in the study of organophosphorus compounds. This is the 40th in a series of volumes which first appeared in 1970 under the editorship of Stuart Trippett and which covered the literature of organophosphorus chemistry published in the period from January 1968 to June 1969, citing some 1370 publications. The present volume covers the literature from January 2009 to January 2010, citing more than 2200 publications, continuing our efforts to provide an up to date survey of progress in an area of chemistry that has expanded significantly over the past 40 years.
An important area of current research in epilepsy focuses on identifying the specific regions within the brain that are affected in individuals with recurring seizures. The epileptogenic process may result not only in pathology in focal cortical regions, but abnormalities in subcortical structures, such as thalamus and basal ganglia, and in intercortical and intracortical connecting white matter pathways. Novel methods of treating refractory epilepsy are urgently needed. The goal of identifying for each affected individual the specific brain regions that are involved offers the promise that novel methods of treatment will one day be developed that specifically target those abnormal regions. ...
description not available right now.