You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magneto electronics and devices. Spin Electronics is unique in that it combines tutorial and introductory information on the significance of spin electronics research and applications development in this rapidly developing field. It reviews profound technical and policy implications of spin-based devices for the future of semiconductor electronics, non-volatile computer memory, nanotechnology, and quantum computing and communications. For example, the report discusses the potential for spin electronics to help maintain the progress in price and performance of electronics and computers described in Moore's Law. Finally, information on funding and level of effort in the laboratories visited by the panel is provided.
A survey of the machinery and science of the nanometer scale. Its twenty-two contributing authors, drawn from many different disciplines including atomic physics, microelectronics, polymer chemistry, and biophysics, delineate the course of current research and articulate a vision for the development of the nanometer frontiers in electronics, mechanics, chemistry, magnetics, materials, and biology. They reveal a world thirty years hence where motors are smaller than the diameter of a human hair; where single-celled organisms are programmed to fabricate materials with nanometer precision; where single atoms are used for computation, and where quantum chaos is the norm. Aimed at the level of at least a junior- or senior- level undergraduate in biology, chemistry, physics, or engineering.
In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, bal
description not available right now.
This book identifies opportunities, priorities, and challenges for the field of condensed-matter and materials physics. It highlights exciting recent scientific and technological developments and their societal impact and identifies outstanding questions for future research. Topics range from the science of modern technology to new materials and structures, novel quantum phenomena, nonequilibrium physics, soft condensed matter, and new experimental and computational tools. The book also addresses structural challenges for the field, including nurturing its intellectual vitality, maintaining a healthy mixture of large and small research facilities, improving the field's integration with other disciplines, and developing new ways for scientists in academia, government laboratories, and industry to work together. It will be of interest to scientists, educators, students, and policymakers.
While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide, the current theoretical paradigm for superconductivity suffers from a number of limitations. For example, there is no currently accepted theoretical explanation for the pattern of superconductor critical temperatures in the periodic table. Historical