You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book is an introduction to residuated structures, viewed as a common thread binding together algebra and logic. The framework includes well-studied structures from classical abstract algebra such as lattice-ordered groups and ideals of rings, as well as structures serving as algebraic semantics for substructural and other non-classical logics. Crucially, classes of these structures are studied both algebraically, yielding a rich structure theory along the lines of Conrad's program for lattice-ordered groups, and algorithmically, via analytic sequent or hypersequent calculi. These perspectives are related using a natural notion of equivalence for consequence relations that provides a bridge offering benefits to both sides. Algorithmic methods are used to establish properties like decidability, amalgamation, and generation by subclasses, while new insights into logical systems are obtained by studying associated classes of structures. The book is designed to serve the purposes of novices and experts alike. The first three chapters provide a gentle introduction to the subject, while subsequent chapters provide a state-of-the-art account of recent developments in the field.
This book offers an alternative proof of the Bestvina?Feighn combination theorem for trees of hyperbolic spaces and describes uniform quasigeodesics in such spaces. As one of the applications of their description of uniform quasigeodesics, the authors prove the existence of Cannon?Thurston maps for inclusion maps of total spaces of subtrees of hyperbolic spaces and of relatively hyperbolic spaces. They also analyze the structure of Cannon?Thurston laminations in this setting. Furthermore, some group-theoretic applications of these results are discussed. This book also contains background material on coarse geometry and geometric group theory.
A fundamental question in the theory of discrete and continuous-time population models concerns the conditions for the extinction or persistence of populations – a question that is addressed mathematically by persistence theory. For some time, it has been recognized that if the dynamics of a structured population are mathematically captured by continuous or discrete semiflows and if these semiflows have first-order approximations, the spectral radii of certain bounded linear positive operators (better known as basic reproduction numbers) act as thresholds between population extinction and persistence. This book combines the theory of discrete-time dynamical systems with applications to pop...
This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to...
The Langlands program has been a very active and central field in mathematics ever since its conception over 50 years ago. It connects number theory, representation theory and arithmetic geometry, and other fields in a profound way. There are nevertheless very few expository accounts beyond the GL(2) case. This book features expository accounts of several topics on automorphic forms on higher rank groups, including rationality questions on unitary group, theta lifts and their applications to Arthur's conjectures, quaternionic modular forms, and automorphic forms over functions fields and their applications to inverse Galois problems. It is based on the lecture notes prepared for the twenty-fifth Arizona Winter School on “Automorphic Forms beyond GL(2)”, held March 5–9, 2022, at the University of Arizona in Tucson. The speakers were Ellen Eischen, Wee Teck Gan, Aaron Pollack, and Zhiwei Yun. The exposition of the book is in a style accessible to students entering the field. Advanced graduate students as well as researchers will find this a valuable introduction to various important and very active research areas.
Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questions of bimonoidal categories in mathematics and other sciences. The three books published by the AMS in the Mathematical Surveys and Monographs series under the general title Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory (Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories?this book, Volume II: Braided Bimonoidal Categories with Applications, and Volume III: From Categories to Structured Ring Spectra) p...
The goal of this book is to introduce the reader to methodologies in recovery problems for objects, such as functions and signals, from partial or indirect information. The recovery of objects from a set of data demands key solvers of inverse and sampling problems. Until recently, connections between the mathematical areas of inverse problems and sampling were rather tenuous. However, advances in several areas of mathematical research have revealed deep common threads between them, which proves that there is a serious need for a unifying description of the underlying mathematical ideas and concepts. Freeden and Nashed present an integrated approach to resolution methodologies from the perspe...