You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Codes, Curves, and Signals: Common Threads in Communications is a collection of seventeen contributions from leading researchers in communications. The book provides a representative cross-section of cutting edge contemporary research in the fields of algebraic curves and the associated decoding algorithms, the use of signal processing techniques in coding theory, and the application of information-theoretic methods in communications and signal processing. The book is organized into three parts: Curves and Codes, Codes and Signals, and Signals and Information. Codes, Curves, and Signals: Common Threads in Communications is a tribute to the broad and profound influence of Richard E. Blahut on the fields of algebraic coding, information theory, and digital signal processing. All the contributors have individually and collectively dedicated their work to R. E. Blahut. Codes, Curves, and Signals: Common Threads in Communications is an excellent reference for researchers and professionals.
This is the new edition of the classic book Computer Arithmetic in three volumes published originally in 1990 by IEEE Computer Society Press. As in the original, the book contains many classic papers treating advanced concepts in computer arithmetic, which is very suitable as stand-alone textbooks or complementary materials to textbooks on computer arithmetic for graduate students and research professionals interested in the field. Told in the words of the initial developers, this book conveys the excitement of the creators, and the implementations provide insight into the details necessary to realize real chips. This second volume presents topics on error tolerant arithmetic, digit on-line ...
. 70 . 4. Elimination of Inadmissible M-Races . . . . . . . . . .. . . 73 . 5. Elimination of Inadmissible L-Races . . . . . . . . . .. . . 86 .
This monograph is a thoroughly revised and extended version of the author's PhD thesis, which was selected as the winning thesis of the 2002 ACM Doctoral Dissertation Competition. Venkatesan Guruswami did his PhD work at the MIT with Madhu Sudan as thesis adviser. Starting with the seminal work of Shannon and Hamming, coding theory has generated a rich theory of error-correcting codes. This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the transmission errors efficiently. This book presents some spectacular new results in the area of decoding algorithms for error-correcting codes. Specificially, it shows how the notion of list-decoding can be applied to recover from far more errors, for a wide variety of error-correcting codes, than achievable before The style of the exposition is crisp and the enormous amount of information on combinatorial results, polynomial time list decoding algorithms, and applications is presented in well structured form.
Advances in Algebraic Geometry Codes presents the most successful applications of algebraic geometry to the field of error-correcting codes, which are used in the industry when one sends information through a noisy channel. The noise in a channel is the corruption of a part of the information due to either interferences in the telecommunications or degradation of the information-storing support (for instance, compact disc). An error-correcting code thus adds extra information to the message to be transmitted with the aim of recovering the sent information. With contributions from renowned researchers, this pioneering book will be of value to mathematicians, computer scientists, and engineers in information theory.