You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This work provides the broad range of applications of inorganic compounds. Due to their well defined properties they play an important role in many fields either on a large scale in our daily life or as niche products. Experts from industry and academia present the vast amount of distinguished materials focusing on their synthesis and function. Volume 2 covers e.g. electronic, magnetic, biomedical, carbon- and sulfur-based materials and ceramics.
This work provides the broad range of applications of inorganic compounds. Due to their well defined properties they play an important role in many fields either on a large scale in our daily life or as niche products. Experts from industry and academia present the vast amount of distinguished materials focusing on their synthesis and function. Volume 1 covers e.g. coatings, (inter)metallics, technical gases, ionic solids, catalytic materials.
This laboratory manual offers a broad introduction to the chemistry of transition elements and more specifically to the chemistry of titanium, vanadium, chromium, molybdenum, manganese, iron, cobalt, nickel, copper, zinc, cadnium and mercury. The book includes preparation and properties of these transition metals and introduces the chemistry student to the laboratory skills required for accurate and precise chemical analysis.
Many elements and inorganic compounds play an extraordinary role in daily life for numerous applications, e. g., construction materials, inorganic pigments, inorganic coatings, steel, glass, technical gases, energy storage and conversion materials, fertilizers, homogeneous and heterogeneous catalysts, photofunctional materials, semiconductors, superconductors, soft- and hard magnets, technical ceramics, hard materials, or biomedical and bioactive materials. The present book is written by experienced authors who give a comprehensive overview on the many chemical and physico-chemical aspects related to application of inorganic compounds and materials in order to introduce senior undergraduate and postgraduate students (chemists, physicists, materials scientists, engineers) into this broad field.
This work introduces into the chemistry, materials science and technology of Rare Earth Elements. The chapters by experienced lecturers describe comprehensively the recent studies of their characteristics, properties and applications in functional materials. Due to the broad range of covered topics as hydrogen storage materials, LEDs or permanent magnets this work gives an up-to-date presentation of this fascinating research.
In this, the only up-to-date book on this key technology, the number-one expert in the field perfectly blends academic knowledge and industrial applications. Adopting a didactical approach, Professor Ronda discusses all the underlying principles, such that both researchers as well as beginners in the field will profit from this book. The focus is on the inorganic side and the phenomena of luminescence behind the manifold applications illustrated here, including displays, LEDs, lamps, and medical applications. Valuable reading for chemists and electrochemists, as well as materials scientists, those working in the optical and chemical industry, plus lamp and lighting manufacturers.
This book gives an overview on the fundamentals and recent developments in the field of luminescent materials. Starting from the definitions and properties of phosphors, novel application areas as well as spectroscopic methods for characterization will be described. The reader will benefit from the vast knowledge of the authors with backgrounds in industry as well as academia.
This new edition features numerous updates and additions. Especially 4 new chapters on Fiber Optics, Integrated Optics, Frequency Combs and Interferometry reflect the changes since the first edition. In addition, major complete updates for the chapters: Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit. Features Contains over 1000 two-color illustrations. Includes over 120 comprehensive tables with properties of optical materials and light sources. Emphasizes physical concepts over extensive mathematical derivations. Chapters with summaries, detailed index Delivers a wealth of up-to-date references.
This book describes advances in both experimental and theoretical treatments in the field of energy transfer processes that are relevant to various fields, such as spectroscopy, laser technology, phosphors, artificial solar energy conversion, and photobiology. It presents the principles and available techniques through specific examples. In addition, it examines current and possible applications, including the most recent developments, and projects future advances and research possibilities in the field.