You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The term "neuromechanics" defines an integrative approach that combines the neuromuscular control and the biomechanical aspects of physical behavior in humans and animals. Crucial to this approach is a detailed description and modeling of the interaction between the nervous system and the controlled biomechanical plant. Only then do we have the broader context within which to understand evolution, movement mechanics, neural control, energetics, disability and rehabilitation. In addition to enabling new basic science directions, understanding the interrelations between movement neural and mechanical function should also be leveraged for the development of personalized wearable technologies to augment or restore the motor capabilities of healthy or impaired individuals. Similarly, this understanding will empower us to revisit current approaches to the design and control of robotic and humanoid systems to produce truly versatile human-like physical behavior and adaptation in real-world environments. This Research Topic is therefore poised at an opportune moment to promote understanding of apparently disparate topics into a coherent focus.
This collection of contributions on the subject of the neural mechanisms of sensorimotor control resulted from a conference held in Cairns, Australia, September 3-6, 2001. While the three of us were attending the International Union of Physiological Sciences (IUPS) Congress in St Petersburg, Russia, in 1997, we discussed the implications of the next Congress being awarded to New Zealand. We agreed to organise a satellite to this congress in an area of mutual interest -the neuroscience of movement and sensation. Australia has a long-standing and enviable reputation in the field of neural mechanisms of sensorimotor control. Arguably this reached its peak with the award of a Nobel Prize to Sir ...
description not available right now.
The Routledge Handbook of Motor Control and Motor Learning is the first book to offer a comprehensive survey of neurophysiological, behavioural and biomechanical aspects of motor function. Adopting an integrative approach, it examines the full range of key topics in contemporary human movement studies, explaining motor behaviour in depth from the molecular level to behavioural consequences. The book contains contributions from many of the world ́s leading experts in motor control and motor learning, and is composed of five thematic parts: Theories and models Basic aspects of motor control and learning Motor control and learning in locomotion and posture Motor control and learning in volunta...
This book presents studies of self-motion by an international group of basic and applied researchers including biologists, psychologists, comparative physiologists, kinesiologists, aerospace and control engineers, physicians, and physicists. Academia is well represented and accounts for most of the applied research offered. Basic theoretical research is further represented by private research companies and also by government laboratories on both sides of the Atlantic. Researchers and students of biology, psychology, physiology, kinesiology, engineering, and physics who have an interest in self-motion -- whether it be underwater, in space, or on solid ground -- will find this volume of intere...
The processing of spatial information is an increasingly important topic, especially in recent few years, with new findings emerging from such diverse disciplines as cognitive neuroscience; cognitive psychology; sensorimotor integration; neuropsychology and neuroanatomy. Bringing together contributions from a group of internationally highly renowned researchers from across these disciplines, this book offers a state-of-the-art platform on which the latest developments in spatial processing are presented.
This proceedings volume contains papers that have been selected after review for oral presentation at ROMANSY 2016, the 21th CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators. These papers cover advances on several aspects of the wide field of Robotics as concerning Theory and Practice of Robots and Manipulators. ROMANSY 2016 is the 21st event in a series that started in 1973 as one of the first conference activities in the world on Robotics. The first event was held at CISM (International Centre for Mechanical Science) in Udine, Italy on 5-8 September 1973. It was also the first topic conference of IFToMM (International Federation for the Promotion of Mechanism and Machine Science) and it was directed not only to the IFToMM community.
The International Congress on Neurotechnology, Electronics, and Informatics (NEUROTECHNIX) took place in Algarve, Portugal in September of 2013. The congress provided a meeting point of academics and clinical and engineering professionals, promoting translational discussions on how research and technology can meet the needs of clinical practitioners and patients. NEUROTECHNIX emphasized research and application of neurotechnologies to various neurological disorders, including neuromuscular diseases, Parkinson's disease, developmental disorders, dementia, epilepsy, sleep disorders, Multiple Sclerosis, neuroinfections, brain tumors, stroke, traumatic brain injuries, Cerebral Palsy, spinal cord injury and vision and hearing disorders. Authors were invited to submit innovative research work that highlighted new advancements of neurotechnology. Papers describing case studies, advanced prototypes, systems, tools and techniques and general survey papers indicating future directions were encouraged. This book contains a limited selection of extended and revised versions of the best papers presented at the congress, by regular and keynote speakers.
This is the most comprehensive and up-to-date account of the control of vertebrate head movements and its biomechanical and neural basis. It covers the entire spectrum of research on head-neck movements, ranging from the global description and analysis of a particular behavior to its underlying mechanisms at the level of neurotransmitter release and membrane biophysics.