You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The current book entitled Heterojunctions and Nanostructures is divided into two sections. In Section 1, the chapters are related to topological insulators where their theoretical aspects, their current experiments, and their applications are presented. A few presented topics are, among others, the topological phases of matter, band topology of insulators and also of Weyl semimetals, transport properties of 3D topological insulator quantum wires and the influence of disorder, transport properties of quasi-1D (and 2D) topological surface states, quantum coherence, and topological insulator thin-film Hall bar device. In Section 2, the chapters are related to light devices such as laser diodes and their fabrication techniques. This section includes, among others, topics such as semiconductor quantum nanowire laser diodes, solutions of Schrodinger equation in nanostructures, numerical methods, light-to-electricity conversion devices, photoexcited carrier transportation process in quantum wells and quantum dots, growth mode and characterization of heterostructure of large lattice mismatch, and photoionization cross section.
The book Quantum Dots - Theory and Applications collects some new research results in the area of fundamental excitations, decoherence, charge states, epitaxial techniques and photoluminescence experiments related to devices made with quantum dots. This book is divided in two sections. First section includes the fundamental theories on excitons, trions, phase decoherence, and charge states, and the second section includes several applications of quantum dots.
The field of low-dimensional structures has been experiencing rapid development in both theoretical and experimental research. Phonons in Low Dimensional Structures is a collection of chapters related to the properties of solid-state structures dependent on lattice vibrations. The book is divided into two parts. In the first part, research topics such as interface phonons and polaron states, carrier-phonon non-equilibrium dynamics, directional projection of elastic waves in parallel array of N elastically coupled waveguides, collective dynamics for longitudinal and transverse phonon modes, and elastic properties for bulk metallic glasses are related to semiconductor devices and metallic glas...
Research in quantum communication requires knowledge of the information theory and teleportation of information in any physical form using the quantum field as media of all different processes and aspects on the managing of their information, their boson processing and their technologies. Likewise, one of the most important principles in researching is the quantum intertwining to define the management of communication of the quantum type. Other aspects related to the design of technologies to the quantum communication base and their development on transceptor models of Bose-Einstein observation nature to form a quantum laser wave of atoms. This quantum wave is a wave-links chain that defines and determines the quantum communication. Quantum computing models are very useful to establish the programming order required in the quantum communication processes. The present book is a compilation of the chapters that cover several of these themes and in other cases, put the field theories to test regarding what is quantum communication and its technologies.
Magnetic materials are important materials for high-tech areas and technological development, which are being classified not only based on their origin but also by the nature of processing, properties, functions, and applications. This book presents an overview of the different types of new magnetic materials and hybrid structures that exhibit different magnetic phenomena and interesting properties. The reported materials are studied theoretically and experimentally, which are the building blocks of all technological innovations. Topics such as magnetic levitation are given for industrial applications. The chapters of the book provide a key description of magnetic materials. This book is suitable for undergraduate and graduate students and professionals including engineers, scientists, researchers, technicians, and technology managers. This book gives an idea to readers for scientific innovation in this field.
The book entitled Nonmagnetic and Magnetic Quantum Dots is divided into two sections. In Section 1, the chapters are related to nonmagnetic quantum dots and their applications. More specifically, exact models and numerical methods have been presented to describe the analytical solution of the carrier wave functions, the quantum mechanical aspects of quantum dots, and the comparison of the latter to experimental data. Furthermore, methods to produce quantum dots, synthesis techniques of colloidal quantum dots, and applications on sensors and biology, among others, are included in this section. In Section 2, a few topics of magnetic quantum dots and their applications are presented. The section starts with a theoretical model to describe the magnetization dynamics in magnetic quantum dot array and the description of dilute magnetic semiconducting quantum dots and their applications. Additionally, a few applications of magnetic quantum dots in sensors, biology, and medicine are included in Section 2.
The book provides a thorough survey of current research in quantum dots synthesis, properties, and applications. The unique properties of these new nanomaterials offer multifunctional applications in such fields as photovoltaics, light-emitting diodes, field-effect transistors, lasers, photodetectors, solar cells, biomedical diagnostics and quantum computing. Keywords: Quantum Dots (QD), Photovoltaics, Light-emitting Diodes, Field-effect Transistors, Lasers, Photodetectors, Solar Cells, Biomedical Diagnostics, Quantum Computing, QD Synthesis, Carbon QDs, Graphene QDs, QD Sensors, Supercapacitors, Magnetic Quantum Dots, Cellular/Molecular Separation, Chromatographic Separation Column, Photostability, Luminescence of Carbon QDs, QD Materials for Water Treatment, Semiconductor Quantum Dots, QD Drug Delivery, Antibacterial Quantum Dots.
The current book entitled Heterojunctions and Nanostructures is divided into two sections. In Section 1, the chapters are related to topological insulators where their theoretical aspects, their current experiments, and their applications are presented. A few presented topics are, among others, the topological phases of matter, band topology of insulators and also of Weyl semimetals, transport properties of 3D topological insulator quantum wires and the influence of disorder, transport properties of quasi-1D (and 2D) topological surface states, quantum coherence, and topological insulator thin-film Hall bar device. In Section 2, the chapters are related to light devices such as laser diodes and their fabrication techniques. This section includes, among others, topics such as semiconductor quantum nanowire laser diodes, solutions of Schrodinger equation in nanostructures, numerical methods, light-to-electricity conversion devices, photoexcited carrier transportation process in quantum wells and quantum dots, growth mode and characterization of heterostructure of large lattice mismatch, and photoionization cross section.
The book entitled Nonmagnetic and Magnetic Quantum Dots is divided into two sections. In Section 1, the chapters are related to nonmagnetic quantum dots and their applications. More specifically, exact models and numerical methods have been presented to describe the analytical solution of the carrier wave functions, the quantum mechanical aspects of quantum dots, and the comparison of the latter to experimental data. Furthermore, methods to produce quantum dots, synthesis techniques of colloidal quantum dots, and applications on sensors and biology, among others, are included in this section. In Section 2, a few topics of magnetic quantum dots and their applications are presented. The section starts with a theoretical model to describe the magnetization dynamics in magnetic quantum dot array and the description of dilute magnetic semiconducting quantum dots and their applications. Additionally, a few applications of magnetic quantum dots in sensors, biology, and medicine are included in Section 2.
Germanium is an elemental semiconductor, which played an important role in the birth of the semiconductor but soon was replaced with silicon. However, germanium is poised to make a remarkable comeback in the semiconductor industry. With this increasing attention, this book describes the fundamental aspects of germanium and its applications. The contributing authors are experts in their field with great in-depth knowledge. The authors strongly feel that this contribution might be of interest to readers and help to expand the scope of their knowledge.