You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This volume is based on the proceedings of the International Workshop on Dynamical Systems and their Applications in Biology held at the Canadian Coast Guard College on Cape Breton Island (Nova Scotia, Canada). It presents a broad picture of the current research surrounding applications of dynamical systems in biology, particularly in population biology. The book contains 19 papers and includes articles on the qualitative and/or numerical analysis of models involving ordinary, partial, functional, and stochastic differential equations. Applications include epidemiology, population dynamics, and physiology. The material is suitable for graduate students and research mathematicians interested in ordinary differential equations and their applications in biology. Also available by Ruan, Wolkowicz, and Wu is Differential Equations with Applications to Biology, Volume 21 in the AMS series Fields Institute Communications.
This book covers a wide range of phenomena in the natural sciences dominated by notions of universality and renormalization. The contributions in this volume are equally broad in their approach to these phenomena, offering the mathematical as well as the perspective of the applied sciences. They explore renormalization theory in quantum field theory and statistical physics, and its connections to modern mathematics as well as physics on scales from the microscopic to the macroscopic. Information for our distributors: Titles in this series are co-published with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).
This work presents the proceedings from the International Conference on Differential Equations and Control Theory, held recently in Wuhan, China. It provides an overview of current developments in a range of topics including dynamical systems, optimal control theory, stochastic control, chaos, fractals, wavelets and ordinary, partial, functional and stochastic differential equations.
A large number of mathematical models in many diverse areas of science and engineering have lead to the formulation of optimization problems where the best solution (globally optimal) is needed. This book covers a small subset of important topics in global optimization with emphasis on theoretical developments and scientific applications.
This volume contains papers from the 7th International Conference on Difference Equations held at Hunan University (Changsa, China), a satellite conference of ICM2002 Beijing. The volume captures the spirit of the meeting and includes peer-reviewed survey papers, research papers, and open problems and conjectures. Articles cover stability, oscillation, chaos, symmetries, boundary value problems and bifurcations for discrete dynamical systems, difference-differential equations, and discretization of continuous systems. The book presents state-of-the-art research in these important areas. It is suitable for graduate students and researchers in difference equations and related topics.
Focusing on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields the topics covered in this volume include Schoof's $\ell$-adic point counting algorithm, the $p$-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on the Jacobians of $C_{ab}$ curves and zeta functions.
This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This ...
"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.
"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.