You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
- Combines material from many areas of mathematics, including algebra, geometry, and analysis, so students see connections between these areas - Applies material to physics so students appreciate the applications of abstract mathematics - Assumes only linear algebra and calculus, making an advanced subject accessible to undergraduates - Includes 142 exercises, many with hints or complete solutions, so text may be used in the classroom or for self study
In 1915 and 1916 Emmy Noether was asked by Felix Klein and David Hilbert to assist them in understanding issues involved in any attempt to formulate a general theory of relativity, in particular the new ideas of Einstein. She was consulted particularly over the difficult issue of the form a law of conservation of energy could take in the new theory, and she succeeded brilliantly, finding two deep theorems. But between 1916 and 1950, the theorem was poorly understood and Noether's name disappeared almost entirely. People like Klein and Einstein did little more then mention her name in the various popular or historical accounts they wrote. Worse, earlier attempts which had been eclipsed by Noe...
This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journ...
This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry andgeneral connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles. As such, this book will be of great interest to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids.
This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. The volume is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.
This book is a collection of the lectures and talks presented in the Tohoku Forum for Creativity in the thematic year 2015 'Fundamental Problems in Quantum Physics: Strings, Black Holes and Quantum Information', and related events in the period 2014-2016.This volume especially contains an overview of recent developments in the theory of strings and membranes, as well as topological field theory.
This volume gives an overview of the recent representative developments in relativistic and non-relativistic quantum theory, which are related to the application of various mathematical notions of various symmetries. These notions are centered upon groups, algebras and their generalizations, and are applied in interaction with topology, differential geometry, functional analysis and related fields. The emphasis is on results in the following areas: foundation of quantum physics, quantization methods, nonlinear quantum mechanics, algebraic quantum field theory, gauge and string theories, discrete spaces, quantum groups and generalized symmetries.
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics
This volume contains material submitted to a symposium on mathematical physics in July 1993 at the Technical University of Clausthal. It focuses on mathematical and physical notions of symmetries, especially on generalized and quantum symmetries (quantum groups and algebras) with applications to integrable systems, quasi-exact solvability, quantization methods and nonlinear problems. The workshop is a continuation of the series of meetings and workshops on mathematical physics in Clausthal which brings together mathematicians, theoretical and mathematical physicists working in the different parts of generalized symmetries. Recent developments in the mathematical structure and physical applications of generalized symmetries are discussed.
This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.