You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The intelligent vehicle will play a crucial and essential role in the development of the future intelligent transportation system, which is developing toward the connected driving environment, ultimate driving safety, and comforts, as well as green efficiency. While the decision making, planning, and control are extremely vital components of the intelligent vehicle, these modules act as a bridge, connecting the subsystem of the environmental perception and the bottom-level control execution of the vehicle as well. This short book covers various strategies of designing the decision making, trajectory planning, and tracking control, as well as share driving, of the human-automation to adapt to...
Automobiles have played an important role in the shaping of the human civilization for over a century and continue to play a crucial role today. The design, construction, and performance of automobiles have evolved over the years. For many years, there has been a strong shift toward electrification of automobiles. It started with the by-wire systems where more efficient electro-mechanical subsystems started replacing purely mechanical devices, e.g., anti-lock brakes, drive-by-wire, and cruise control. Over the last decade, driven by a strong push for fuel efficiency, pollution reduction, and environmental stewardship, electric and hybrid electric vehicles have become quite popular. In fact, ...
The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest. In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field.
A road traffic participant is a person who directly participates in road traffic, such as vehicle drivers, passengers, pedestrians, or cyclists, however, traffic accidents cause numerous property losses, bodily injuries, and even deaths to them. To bring down the rate of traffic fatalities, the development of the intelligent vehicle is a much-valued technology nowadays. It is of great significance to the decision making and planning of a vehicle if the pedestrians' intentions and future trajectories, as well as those of surrounding vehicles, could be predicted, all in an effort to increase driving safety. Based on the image sequence collected by onboard monocular cameras, we use the Long Sho...
The urgent need for vehicle electrification and improvement in fuel efficiency has gained increasing attention worldwide. Regarding this concern, the solution of hybrid vehicle systems has proven its value from academic research and industry applications, where energy management plays a key role in taking full advantage of hybrid electric vehicles (HEVs). There are many well-established energy management approaches, ranging from rules-based strategies to optimization-based methods, that can provide diverse options to achieve higher fuel economy performance. However, the research scope for energy management is still expanding with the development of intelligent transportation systems and the ...
Soldier King Ye Chen was one of the top fighters in the country's special forces. However, his teammates' deaths caused him to leave the army and return to the civilian population. On one side, there were many schemes and on the other, there were countless beauties. If one could defeat a tyrant, they would be able to kill off their enemy, win the favor of beauties, and then see how the super soldier king would play with his city life.
To resolve the urban transportation challenges like congestion, parking, fuel consumption, and pollution, narrow urban vehicles which are small in footprint and light in their gross weight are proposed. Apart from the narrow cabin design, these vehicles are featured by their active tilting system, which automatically tilts the cabin like a motorcycle during the cornering for comfort and safety improvements. Such vehicles have been manufactured and utilized in city commuter programs. However, there is no book that systematically discusses the mechanism, dynamics, and control of narrow tilting vehicles (NTVs). In this book, motivations for building NTVs and various tilting mechanisms designs are reviewed, followed by the study of their dynamics. Finally, control algorithms designed to fully utilize the potential of tilting mechanisms in narrow vehicles are discussed. Special attention is paid to an efficient use of the control energy for rollover mitigation, which greatly enhance the stability of NTVs with optimized operational costs.
Vehicle rollover accidents have been a serious safety problem for the last three decades. Although rollovers are a small percentage of all traffic accidents, they do account for a large proportion of severe and fatal injuries. Specifically, some large passenger vehicles, such as large vans, pickup trucks, and sport utility vehicles, are more prone to rollover accidents with a high center of gravity (CG) and narrow track width. Vehicle rollover accidents may be grouped into two categories: tripped and untripped rollovers. A tripped rollover commonly occurs when a vehicle skids and digs its tires into soft soil or hits a tripping mechanism such as a curb with a sufficiently large lateral veloc...
This book studies the design optimization, state estimation, and advanced control methods for cyber-physical vehicle systems (CPVS) and their applications in real-world automotive systems. First, in Chapter 1, key challenges and state-of-the-art of vehicle design and control in the context of cyber-physical systems are introduced. In Chapter 2, a cyber-physical system (CPS) based framework is proposed for high-level co-design optimization of the plant and controller parameters for CPVS, in view of vehicle's dynamic performance, drivability, and energy along with different driving styles. System description, requirements, constraints, optimization objectives, and methodology are investigated. In Chapter 3, an Artificial-Neural-Network-based estimation method is studied for accurate state estimation of CPVS. In Chapter 4, a high-precision controller is designed for a safety-critical CPVS. The detailed control synthesis and experimental validation are presented. The application results presented throughout the book validate the feasibility and effectiveness of the proposed theoretical methods of design, estimation, control, and optimization for cyber-physical vehicle systems.
In recent years, the control of Connected and Automated Vehicles (CAVs) has attracted strong attention for various automotive applications. One of the important features demanded of CAVs is collision avoidance, whether it is a stationary or a moving obstacle. Due to complex traffic conditions and various vehicle dynamics, the collision avoidance system should ensure that the vehicle can avoid collision with other vehicles or obstacles in longitudinal and lateral directions simultaneously. The longitudinal collision avoidance controller can avoid or mitigate vehicle collision accidents effectively via Forward Collision Warning (FCW), Brake Assist System (BAS), and Autonomous Emergency Braking...