Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Lagrangian Intersection Floer Theory
  • Language: en
  • Pages: 426

Lagrangian Intersection Floer Theory

This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered $A_\infty$-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered $A_\infty$ algebras and $A_\infty$ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.

Kuranishi Structures and Virtual Fundamental Chains
  • Language: en
  • Pages: 631

Kuranishi Structures and Virtual Fundamental Chains

The package of Gromov’s pseudo-holomorphic curves is a major tool in global symplectic geometry and its applications, including mirror symmetry and Hamiltonian dynamics. The Kuranishi structure was introduced by two of the authors of the present volume in the mid-1990s to apply this machinery on general symplectic manifolds without assuming any specific restrictions. It was further amplified by this book’s authors in their monograph Lagrangian Intersection Floer Theory and in many other publications of theirs and others. Answering popular demand, the authors now present the current book, in which they provide a detailed, self-contained explanation of the theory of Kuranishi structures. P...

Symplectic Topology and Floer Homology
  • Language: en
  • Pages: 421

Symplectic Topology and Floer Homology

The first part of a two-volume set offering a systematic explanation of symplectic topology. This volume covers the basic materials of Hamiltonian dynamics and symplectic geometry.

Symplectic Topology and Floer Homology
  • Language: en
  • Pages: 471

Symplectic Topology and Floer Homology

The second part of a two-volume set offering a systematic explanation of symplectic topology. This volume provides a comprehensive introduction to Hamiltonian and Lagrangian Floer theory.

Lagrangian Intersection Floer Theory
  • Language: en
  • Pages: 426

Lagrangian Intersection Floer Theory

description not available right now.

The Breadth of Symplectic and Poisson Geometry
  • Language: en
  • Pages: 666

The Breadth of Symplectic and Poisson Geometry

* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics

Spectral Invariants with Bulk, Quasi-Morphisms and Lagrangian Floer Theory
  • Language: en
  • Pages: 282

Spectral Invariants with Bulk, Quasi-Morphisms and Lagrangian Floer Theory

In this paper the authors first develop various enhancements of the theory of spectral invariants of Hamiltonian Floer homology and of Entov-Polterovich theory of spectral symplectic quasi-states and quasi-morphisms by incorporating bulk deformations, i.e., deformations by ambient cycles of symplectic manifolds, of the Floer homology and quantum cohomology. Essentially the same kind of construction is independently carried out by Usher in a slightly less general context. Then the authors explore various applications of these enhancements to the symplectic topology, especially new construction of symplectic quasi-states, quasi-morphisms and new Lagrangian intersection results on toric and non...

Shapes and Diffeomorphisms
  • Language: en
  • Pages: 441

Shapes and Diffeomorphisms

Shapes are complex objects to apprehend, as mathematical entities, in terms that also are suitable for computerized analysis and interpretation. This volume provides the background that is required for this purpose, including different approaches that can be used to model shapes, and algorithms that are available to analyze them. It explores, in particular, the interesting connections between shapes and the objects that naturally act on them, diffeomorphisms. The book is, as far as possible, self-contained, with an appendix that describes a series of classical topics in mathematics (Hilbert spaces, differential equations, Riemannian manifolds) and sections that represent the state of the art in the analysis of shapes and their deformations. A direct application of what is presented in the book is a branch of the computerized analysis of medical images, called computational anatomy.

Introduction to Foliations and Lie Groupoids
  • Language: en
  • Pages: 187

Introduction to Foliations and Lie Groupoids

This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. An important feature is the emphasis on the interplay between these concepts: Lie groupoids form an indispensable tool to study the transverse structure of foliations as well as their noncommutative geometry, while the theory of foliations has immediate applications to the Lie theory of groupoids and their infinitesimal algebroids. The book starts with a detailed presentation of the main classical theorems in the theory of foliations then proceeds to Molino's theory, Lie groupoids, constructing the holonomy groupoid of a foliation and finally Lie algebroids. Among other things, the authors discuss to what extent Lie's theory for Lie groups and Lie algebras holds in the more general context of groupoids and algebroids. Based on the authors' extensive teaching experience, this book contains numerous examples and exercises making it ideal for graduate students and their instructors.

Lagrangian Floer Theory and Its Deformations
  • Language: en
  • Pages: 426

Lagrangian Floer Theory and Its Deformations

description not available right now.