You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book presents the latest developments and issues in both experimental and theoretical studies of multi-photon processes and the spectroscopy of atoms, ions and molecules in physics, chemistry, biology and material science. It contains review papers suitable for both active researchers and non-experts who wish to enter the field.Special attention is paid to the recent progress of non-linear photonOComatter interactions in atoms, molecules and interfaces: XUV/soft X-ray, high-order harmonic generation in attosecond regime, high-order harmonic generation, sum frequency generation, four-wave mixing spectroscopy and molecular orientation with combined electrostatic and intense, non-resonant laser fields.
The PUILS series presents Progress in Ultrafast Intense Laser Science. This third volume in the series covers a diverse range of disciplines, focusing on such topics as strong field ionization of atoms, ionization and fragmentation of molecules and clusters, generation of high-order harmonics and attosecond pulses, filamentation and laser plasma interaction, and the development of ultrashort and ultrahigh-intensity light sources.
First published in 1987. Routledge is an imprint of Taylor & Francis, an informa company.
Quantum Systems in Chemistry and Physics: Progress in Methods and Applications is a collection of 33 selected papers from the scientific contributions presented at the 16th International Workshop on Quantum Systems in Chemistry and Physics (QSCP-XVI), held at Ishikawa Prefecture Museum of Art in Kanazawa, Japan, from September 11th to 17th, 2011. The volume discusses the state of the art, new trends, and the future of methods in molecular quantum mechanics and their applications to a wide range of problems in physics, chemistry, and biology. The breadth and depth of the scientific topics discussed during QSCP-XVI appears in the classification of the contributions in six parts: I. Fundamental...
This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed chapters authored by researchers at the forefront of each their own subfields of UILS. Every chapter begins with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This seventh volume covers a broad range of topics from this interdisciplinary research field, focusing on the ionization of atoms and molecules, ultrafast responses of protons and electrons within a molecule, molecular alignment, high-order harmonics and attosecond pulse generation, and acceleration of electrons and ions in laser plasmas.
It is a great pleasure that we are now publishing the fourth volume of the series on PUILS, through which we have been introducing the progress in ultrafast intense laser science, the frontiers of which are rapidly expanding, thanks to the progress in ultrashort and high-power laser technologies. The interdisciplinary nature of this research ?eld is attracting researchers with di?erent expertise and backgrounds. As in the previousvolumeson PUILS, each chapter in the presentvolume, which is in the range of 15–25 pages, begins with an introduction in which a clear and concise account of the signi?cance of the topic is given, followed by a description of the authors’ most recent research results. All the chapters are peer-reviewed. The articles of this fourth volume cover a diverse range of the interdisciplinary research ?eld, and the topics may be grouped into four categories: strong ?eld ionization of atoms (Chaps. 1–2), excitation, ioni- tion and fragmentation of molecules (Chaps. 3–5), nonlinear intense optical phenomena and attosecond pulses (Chaps. 6–8), and laser solid interactions and photoemissions (Chaps. 9–11).
In this volume, recent contributions on coherence provide a useful perspective on the diversity of various coherent sources of emission and coherent related phenomena of current interest. These papers provide a preamble for a larger collection of contributions on ultrashort pulse laser generation and ultrashort pulse laser phenomena. Papers on ultrashort pulse phenomena include works on few cycle pulses, high-power generation, propagation in various media, to various applications of current interest. Undoubtedly, Coherence and Ultrashort Pulse Emission offers a rich and practical perspective on this rapidly evolving field.
Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.