You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
- Combines material from many areas of mathematics, including algebra, geometry, and analysis, so students see connections between these areas - Applies material to physics so students appreciate the applications of abstract mathematics - Assumes only linear algebra and calculus, making an advanced subject accessible to undergraduates - Includes 142 exercises, many with hints or complete solutions, so text may be used in the classroom or for self study
In 1915 and 1916 Emmy Noether was asked by Felix Klein and David Hilbert to assist them in understanding issues involved in any attempt to formulate a general theory of relativity, in particular the new ideas of Einstein. She was consulted particularly over the difficult issue of the form a law of conservation of energy could take in the new theory, and she succeeded brilliantly, finding two deep theorems. But between 1916 and 1950, the theorem was poorly understood and Noether's name disappeared almost entirely. People like Klein and Einstein did little more then mention her name in the various popular or historical accounts they wrote. Worse, earlier attempts which had been eclipsed by Noe...
In 1918, Emmy Noether, in her paper Invariante Variationsprobleme, proved two theorems (and their converses) on variational problems that went on to revolutionise theoretical physics. 100 years later, the mathematics of Noether's theorems continues to be generalised, and the physical applications of her results continue to diversify. This centenary volume brings together world-leading historians, philosophers, physicists, and mathematicians in order to clarify the historical context of this work, its foundational and philosophical consequences, and its myriad physical applications. Suitable for advanced undergraduate and graduate students and professional researchers, this is a go-to resource for those wishing to understand Noether's work on variational problems and the profound applications which it finds in contemporary physics.
One of the most important—and beautiful—mathematical solutions ever devised, Noether’s theorem touches on every aspect of physics. "In the judgment of the most competent living mathematicians, Fräulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began."—Albert Einstein The year was 1915, and the young mathematician Emmy Noether had just settled into Göttingen University when Albert Einstein visited to lecture on his nearly finished general theory of relativity. Two leading mathematicians of the day, David Hilbert and Felix Klein, dug into the new theory with gusto, but had difficulty reconciling it with what wa...
Zusammenfassung: This volume collects papers based on lectures given at the XL Workshop on Geometric Methods in Physics, held in Białowieża, Poland in July 2023. These chapters provide readers an overview of cutting-edge research in infinite-dimensional groups, integrable systems, quantum groups, Lie algebras and their generalizations and a wide variety of other areas. Specific topics include: Yang-Baxter equation The restricted Siegel disc and restricted Grassmannian Geometric and deformation quantization Degenerate integrability Lie algebroids and groupoids Skew braces Geometric Methods in Physics XL will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas
A centenary volume that celebrates, extends and applies Noether's 1918 theorems with contributions from world-leading researchers.
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics
These two volumes constitute the Proceedings of the `Conférence Moshé Flato, 1999'. Their spectrum is wide but the various areas covered are, in fact, strongly interwoven by a common denominator, the unique personality and creativity of the scientist in whose honor the Conference was held, and the far-reaching vision that underlies his scientific activity. With these two volumes, the reader will be able to take stock of the present state of the art in a number of subjects at the frontier of current research in mathematics, mathematical physics, and physics. Volume I is prefaced by reminiscences of and tributes to Flato's life and work. It also includes a section on the applications of scie...
This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journ...
Recent developments in computer science, particularly ”data-driven procedures“ have opened a new level of design and engineering. This has also affected architecture. The publication collects contributions on Coding as Literacy by computer scientists, mathematicians, philosophers, cultural theorists, and architects. The main focus in the book is the observation of computer-based methods that go beyond strictly case-based or problem-solution-oriented paradigms. This invites readers to understand Computational Procedures as being embedded in an overarching ”media literacy“ that can be revealed through, and acquired by, ”computational literacy“, and to consider the data processed in the above-mentioned methods as being beneficial in terms of quantum physics. ”Self-Organizing Maps“ (SOM), which were first introduced over 30 years ago, will serve as the concrete reference point for all further discussions.