You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Evariste Galois' short life was lived against the turbulent background of the restoration of the Bourbons to the throne of France, the 1830 revolution in Paris and the accession of Louis-Phillipe. This new and scrupulously researched biography of the founder of modern algebra sheds much light on a life led with great intensity and a death met tragically under dark circumstances. Sorting speculation from documented fact, it offers the fullest and most exacting account ever written of Galois' life and work. It took more than seventy years to fully understand the French mathematician's first mémoire (published in 1846) which formulated the famous "Galois theory" concerning the solvability of algebraic equations by radicals, from which group theory would follow. Obscurities in his other writings - mémoires and numerous fragments of extant papers - persist and his ideas challenge mathematicians to this day. Thus scholars will welcome those chapters devoted specifically to explicating all aspects of Galois' work. A comprehensive bibliography enumerates studies by and also those about the mathematician.
Before he died at the age of twenty, shot in a mysterious early-morning duel at the end of May 1832, Evariste Galois created mathematics that changed the direction of algebra. This book contains English translations of almost all the Galois material. The translations are presented alongside a new transcription of the original French and are enhanced by three levels of commentary. An introduction explains the context of Galois' work, the various publications in which it appears, and the vagaries of his manuscripts. Then there is a chapter in which the five mathematical articles published in his lifetime are reprinted. After that come the testamentary letter and the first memoir (in which Galo...
During the 16th and 17th centuries, mathematicians developed a wealth of new ideas but had not carefully employed accurate definitions, proofs, or procedures to document and implement them. However, in the early 19th century, mathematicians began to recognize the need to precisely define their terms, to logically prove even obvious principles, and to use rigorous methods of manipulation. The Foundations of Mathematics presents the lives and accomplishments of 10 mathematicians who lived between CE 1800 and 1900 and contributed to one or more of the four major initiatives that characterized the rapid growth of mathematics during the 19th century: the introduction of rigor, the investigation of the structure of mathematical systems, the development of new branches of mathematics, and the spread of mathematical activity throughout Europe. This readable new volume communicates the importance and impact of the work of the pioneers who redefined this area of study.
In the fog of a Paris dawn in 1832, variste Galois, the 20-year-old founder of modern algebra, was shot and killed in a duel. That gunshot, suggests Amir Alexander, marked the end of one era in mathematics and the beginning of another. Arguing that not even the purest mathematics can be separated from its cultural background, Alexander shows how popular stories about mathematicians are really morality tales about their craft as it relates to the world. In the eighteenth century, Alexander says, mathematicians were idealized as child-like, eternally curious, and uniquely suited to reveal the hidden harmonies of the world. But in the nineteenth century, brilliant mathematicians like Galois b...
At the heart of relativity theory, quantum mechanics, string theory, and much of modern cosmology lies one concept: symmetry. In Why Beauty Is Truth, world-famous mathematician Ian Stewart narrates the history of the emergence of this remarkable area of study. Stewart introduces us to such characters as the Renaissance Italian genius, rogue, scholar, and gambler Girolamo Cardano, who stole the modern method of solving cubic equations and published it in the first important book on algebra, and the young revolutionary Evariste Galois, who refashioned the whole of mathematics and founded the field of group theory only to die in a pointless duel over a woman before his work was published. Stewart also explores the strange numerology of real mathematics, in which particular numbers have unique and unpredictable properties related to symmetry. He shows how Wilhelm Killing discovered "Lie groups" with 14, 52, 78, 133, and 248 dimensions-groups whose very existence is a profound puzzle. Finally, Stewart describes the world beyond superstrings: the "octonionic" symmetries that may explain the very existence of the universe.
Rich in historical detail and bursting with intellectual passion, this captivating novel describes a genius's valiant quest for truth in post-Napoleon France, a turbulent and uncertain era that in many ways mirrors the world today.
The formative years of the American Mathematical Society coincided with a time of remarkable development in mathematics. During this period, the Bulletin of the American Mathematical Society and its predecessor, The Bulletin of the New York Mathematical Society, served as a primary vehicle for reporting mathematics to American mathematicians. As a result, some of the most important and fundamental work of early twentieth-century mathematics found its way into the Bulletin. Milestone articles include Hilbert's problems presented at the 1900 Paris International Congress of Mathematicians (ICM), Poincare's 1904 lecture on the future of mathematical physics (with commentary suggesting that he wa...
Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. This book follows the historical development of the theory, emphasizing concrete examples along the way. It is suitable for undergraduates and beginning graduate students.