You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is ...
Annotation The first book dealing with the subject of room-temperature conductivity.
“The Frontiers of Knowhledge (to coin a phrase) are always on the move. - day’s discovery will tomorrow be part of the mental furniture of every research worker. By the end of next week it will be in every course of graduate lectures. Within the month there will be a clamour to have it in the undergraduate c- riculum. Next year, I do believe, it will seem so commonplace that it may be assumed to be known by every schoolboy. “The process of advancing the line of settlements, and cultivating and c- ilizing the new territory, takes place in stages. The original papers are p- lished, to the delight of their authors, and to the critical eyes of their readers. Review articles then provide cr...
Modern cosmology is a quickly developing ?eld of research. New technical devices and tools supply the community with new experimental data measured with high accuracy. The self-consistent explanation of these data needs t- oretical models that are based on hypothetical predictions of particle theory. In their turn, such predictions imply cosmology for their probe. Speci?c st- ies of the cosmological consequences of particle theory, linking them to their observable signatures, are actual. This boiling kettle of theoretical research and experimental efforts produces ideas that will be preserved for following generations. The aim of this book is to acquaint the reader with some of these ideas, ...
PhD dissertation awarded with the International Mention in the PhD Programme Condensed Matter Physics, Nanoscience and Biophysics of the Autonomous University of Madrid in year 2019. Explore this PhD dissertation, awarded with an International Mention in the PhD Programm Condensed Matter Physics, Nanoscience, and Biophysics from the Autonomous University of Madrid in 2019. This edition has enhanced readability with refreshing redesign and unique botanic motifs from the international expedition led by Jose Mutis that aim to inspire scientists and science lovers. This thesis delves into micromagnetic and analytical modelling of magnetization processes in three-dimensional nanomagnetism, focusi...
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense world-wide research, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such 'strongly correlated' solids is perhaps the major unsolved...
This book is a tribute to the life and work of J Q Chen. The contributions of Chen to nuclear and molecular physics are discussed vis- -vis present developments in these fields. Among other subjects, the present status of microscopic theories of the interacting boson model in nuclear physics and the theory of symmetry adaptation of molecular vibrations in molecular physics are reviewed. The latter theory is particularly useful for large molecular species such as fullerenes, where icosahedral symmetry plays a fundamental role.
Magnetic Nano-and Microwires: Design, Synthesis, Properties and Applications, Second Edition, reviews the growth and processing of nanowires and nanowire heterostructures using such methods as sol-gel and electrodeposition, focused-electron/ion-beam-induced deposition, epitaxial growth by chemical vapor transport, and more. Other sections cover engineering nanoporous anodic alumina, discuss magnetic and transport properties, domains, domain walls in nano-and microwires. and provide updates on skyrmions, domain walls, magnetism and transport, and the latest techniques to characterize and analyze these effects. Final sections cover applications, both current and emerging, and new chapters on m...
This book develops a new physical/mathematical model for the functioning of the human brain, based, not on the modern Newton-Einstein view of physical reality, but on 'information reality'. The work is devoted to the physical-mathematical modeling of (conscious) cognitive phenomena. The most important distinguishing feature of the theory presented here is a new model of mental space, the so-called p-adic hierarchic tree space, and the development of mental analogs of classical and quantum mechanics. Mental processes and more general information processes are handled as a kind of new physical processes. In particular, the procedure of information quantization and an information analog of Bohmian mechanics are developed. Here, mind is a singularity in the mental pilot wave. Applications to neurophysiology, localization of mental function and brain ablations, and psychology (in particular, Freud's psychoanalysis) are considered.Audience: This book will be of interest to researchers working on physical, mathematical, cognitive, neurophysical, psychological and philosophical aspects of human consciousness.
The book consists of two Volumes. The first (the preceding volume) is devoted to the general nonlinear theory of the hierarchical dynamic oscillative–wave systems. This theory has been called the theory of hi- archical oscillations and waves. Here two aspects of the proposed theory are discussed. The first aspects concern the fundamental nature and the basic c- cepts and ideas of a new hierarchical approach to studying hierarchical dynamic systems. A new hierarchical paradigm is proposed as a - sis of a new point of view of such types of systems. In turn, a set of hierarchical principles is formulated as the fundamental basis of this paradigm. Therein the self-resemblance (holographic) pri...