You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The general frame for the resolution of PDEs is the theory of kernels ù the first elements of which are sufficient to show the practicality of distribution theory in applications. --
This monograph presents univariate and multivariate classical analyses of advanced inequalities. This treatise is a culmination of the author's last thirteen years of research work. The chapters are self-contained and several advanced courses can be taught out of this book. Extensive background and motivations are given in each chapter with a comprehensive list of references given at the end. The topics covered are wide-ranging and diverse. Recent advances on Ostrowski type inequalities, Opial type inequalities, Poincare and Sobolev type inequalities, and HardyOpial type inequalities are examined. Works on ordinary and distributional Taylor formulae with estimates for their remainders and ap...
This book investigates several classes of partial differential equations of real time variable and complex spatial variables, including the heat, Laplace, wave, telegraph, Burgers, Black-Merton-Scholes, Schrödinger and Korteweg-de Vries equations.The complexification of the spatial variable is done by two different methods. The first method is that of complexifying the spatial variable in the corresponding semigroups of operators. In this case, the solutions are studied within the context of the theory of semigroups of linear operators. It is also interesting to observe that these solutions preserve some geometric properties of the boundary function, like the univalence, starlikeness, conve...
This book presents a complete theory of ordinary differential equations, with many illustrative examples and interesting exercises. A rigorous treatment is offered with clear proofs for the theoretical results and with detailed solutions for the examples and problems.This book is intended for undergraduate students who major in mathematics and have acquired a prerequisite knowledge of calculus and partly the knowledge of a complex variable, and are now reading advanced calculus and linear algebra. Additionally, the comprehensive coverage of the theory with a wide array of examples and detailed solutions, would appeal to mathematics graduate students and researchers as well as graduate students in majors of other disciplines.As a handy reference, advanced knowledge is provided as well with details developed beyond the basics; optional sections, where main results are extended, offer an understanding of further applications of ordinary differential equations.
This unique book provides a self-contained conceptual and technical introduction to the theory of differential sheaves. This serves both the newcomer and the experienced researcher in undertaking a background-independent, natural and relational approach to 'physical geometry'. In this manner, this book is situated at the crossroads between the foundations of mathematical analysis with a view toward differential geometry and the foundations of theoretical physics with a view toward quantum mechanics and quantum gravity. The unifying thread is provided by the theory of adjoint functors in category theory and the elucidation of the concepts of sheaf theory and homological algebra in relation to the description and analysis of dynamically constituted physical geometric spectrums.
This monograph presents the author's work of the last five years in approximation theory. The chapters are self-contained and can be read independently. Readers will find the topics covered are diverse and advanced courses can be taught out of this book.The first part of the book is dedicated to fractional monotone approximation theory introduced for the first time by the author, taking the related ordinary theory of usual differentiation at the fractional differentiation level with polynomials and splines as approximators. The second part deals with the approximation by discrete singular operators of the Favard style, for example, of the Picard and Gauss-Weierstrass types. Then, it continue...
The book provides a systemic treatment of time-dependent strong Markov processes with values in a Polish space. It describes its generators and the link with stochastic differential equations in infinite dimensions. In a unifying way, where the square gradient operator is employed, new results for backward stochastic differential equations and long-time behavior are discussed in depth. The book also establishes a link between propagators or evolution families with the Feller property and time-inhomogeneous Markov processes. This mathematical material finds its applications in several branches of the scientific world, among which are mathematical physics, hedging models in financial mathematics, and population models.
This monograph contains the author's work of the last four years in discrete and fractional analysis. It introduces the right delta and right nabla fractional calculus on time scales and continues with the right delta and right nabla discrete fractional calculus in the Caputo sense. Then, it shows representation formulae of functions on time scales and presents Ostrowski type inequalities, Landau type inequalities, Grüss type and comparison of means inequalities, all these over time scales. The volume continues with integral operator inequalities and their multivariate vectorial versions using convexity of functions, again all these over time scales. It follows the Grüss and Ostrowski type...
This second of two volumes gives a modern exposition of the theory of Banach algebras.