You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Get started in the rapidly expanding field of computer vision with this practical guide. Written by Adrian Kaehler and Gary Bradski, creator of the open source OpenCV library, this book provides a thorough introduction for developers, academics, roboticists, and hobbyists. You’ll learn what it takes to build applications that enable computers to "see" and make decisions based on that data. With over 500 functions that span many areas in vision, OpenCV is used for commercial applications such as security, medical imaging, pattern and face recognition, robotics, and factory product inspection. This book gives you a firm grounding in computer vision and OpenCV for building simple or sophistic...
"This library is useful for practitioners, and is an excellent tool for those entering the field: it is a set of computer vision algorithms that work as advertised."-William T. Freeman, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology Learning OpenCV puts you in the middle of the rapidly expanding field of computer vision. Written by the creators of the free open source OpenCV library, this book introduces you to computer vision and demonstrates how you can quickly build applications that enable computers to "see" and make decisions based on that data. Computer vision is everywhere-in security systems, manufacturing inspection systems, medical im...
Every year, 1.2 million people die in automobile accidents and up to 50 million are injured. Many of these deaths are due to driver error and other preventable causes. Autonomous or highly aware cars have the potential to positively impact tens of millions of people. Building an autonomous car is not easy. Although the absolute number of traffic fatalities is tragically large, the failure rate of human driving is actually very small. A human driver makes a fatal mistake once in about 88 million miles. As a co-founding member of the Stanford Racing Team, we have built several relevant prototypes of autonomous cars. These include Stanley, the winner of the 2005 DARPA Grand Challenge and Junior...
Learn key topics such as language basics, pointers and pointer arithmetic, dynamic memory management, multithreading, and network programming. Learn how to use the compiler, the make tool, and the archiver.
Looks at the techniques of interactive design, covering such topics as 2D and 3D graphics, sound, computer vision, and geolocation.
Papers from a flagship conference reflect the latest developments in the field, including work in such rapidly advancing areas as human-robot interaction and formal methods. Robotics: Science and Systems VII spans a wide spectrum of robotics, bringing together researchers working on the algorithmic or mathematical foundations of robotics, robotics applications, and analysis of robotics systems. This volume presents the proceedings of the seventh annual Robotics: Science and Systems conference, held in 2011 at the University of Southern California. The papers presented cover a wide range of topics in robotics, spanning mechanisms, kinematics, dynamics and control, human-robot interaction and human-centered systems, distributed systems, mobile systems and mobility, manipulation, field robotics, medical robotics, biological robotics, robot perception, and estimation and learning in robotic systems. The conference and its proceedings reflect not only the tremendous growth of robotics as a discipline but also the desire in the robotics community for a flagship event at which the best of the research in the field can be presented.
For readers needing a basic understanding of Computer Vision's underlying theory and algorithms, this hands-on introduction is the ideal place to start. Examples written in Python are provided with modules for handling images, mathematical computing, and data mining.
By the dawn of the new millennium, robotics has undergone a major transformation in scope and dimensions. This expansion has been brought about by the maturity of the field and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reach...