Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
  • Language: en
  • Pages: 435

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. ...

Ethics of Artificial Intelligence
  • Language: en
  • Pages: 545

Ethics of Artificial Intelligence

Should a self-driving car prioritize the lives of the passengers over the lives of pedestrians? Should we as a society develop autonomous weapon systems that are capable of identifying and attacking a target without human intervention? What happens when AIs become smarter and more capable than us? Could they have greater than human moral status? Can we prevent superintelligent AIs from harming us or causing our extinction? At a critical time in this fast-moving debate, thirty leading academics and researchers at the forefront of AI technology development come together to explore these existential questions, including Aaron James (UC Irvine), Allan Dafoe (Oxford), Andrea Loreggia (Padova), Andrew Critch (UC Berkeley), Azim Shariff (Univ. .

Computer Vision
  • Language: en
  • Pages: 362

Computer Vision

  • Type: Book
  • -
  • Published: 2010-04-06
  • -
  • Publisher: Springer

Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University ...

Advances in Artificial Intelligence, Big Data and Algorithms
  • Language: en
  • Pages: 1224

Advances in Artificial Intelligence, Big Data and Algorithms

  • Type: Book
  • -
  • Published: 2023-12-19
  • -
  • Publisher: IOS Press

Computers and automation have revolutionized the lives of most people in the last two decades, and terminology such as algorithms, big data and artificial intelligence have become part of our everyday discourse. This book presents the proceedings of CAIBDA 2023, the 3rd International Conference on Artificial Intelligence, Big Data and Algorithms, held from 16 - 18 June 2023 as a hybrid conference in Zhengzhou, China. The conference provided a platform for some 200 participants to discuss the theoretical and computational aspects of research in artificial intelligence, big data and algorithms, reviewing the present status and future perspectives of the field. A total of 362 submissions were r...

Computational Texture and Patterns
  • Language: en
  • Pages: 99

Computational Texture and Patterns

Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the mo...

Computer Vision – ECCV 2016
  • Language: en
  • Pages: 893

Computer Vision – ECCV 2016

  • Type: Book
  • -
  • Published: 2016-09-15
  • -
  • Publisher: Springer

The eight-volume set comprising LNCS volumes 9905-9912 constitutes the refereed proceedings of the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The 415 revised papers presented were carefully reviewed and selected from 1480 submissions. The papers cover all aspects of computer vision and pattern recognition such as 3D computer vision; computational photography, sensing and display; face and gesture; low-level vision and image processing; motion and tracking; optimization methods; physics-based vision, photometry and shape-from-X; recognition: detection, categorization, indexing, matching; segmentation, grouping and shape representation; statistical methods and learning; video: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action, activity and tracking; 3D; and 9 poster sessions.

Computer Vision - ECCV 2006
  • Language: en
  • Pages: 676

Computer Vision - ECCV 2006

description not available right now.

Deep Learning for Image Processing Applications
  • Language: en
  • Pages: 284

Deep Learning for Image Processing Applications

  • Type: Book
  • -
  • Published: 2017-12
  • -
  • Publisher: IOS Press

Deep learning and image processing are two areas of great interest to academics and industry professionals alike. The areas of application of these two disciplines range widely, encompassing fields such as medicine, robotics, and security and surveillance. The aim of this book, ‘Deep Learning for Image Processing Applications’, is to offer concepts from these two areas in the same platform, and the book brings together the shared ideas of professionals from academia and research about problems and solutions relating to the multifaceted aspects of the two disciplines. The first chapter provides an introduction to deep learning, and serves as the basis for much of what follows in the subsequent chapters, which cover subjects including: the application of deep neural networks for image classification; hand gesture recognition in robotics; deep learning techniques for image retrieval; disease detection using deep learning techniques; and the comparative analysis of deep data and big data. The book will be of interest to all those whose work involves the use of deep learning and image processing techniques.

Deep Neural Networks and Data for Automated Driving
  • Language: en
  • Pages: 435

Deep Neural Networks and Data for Automated Driving

This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What ...

Explainable Natural Language Processing
  • Language: en
  • Pages: 107

Explainable Natural Language Processing

This book presents a taxonomy framework and survey of methods relevant to explaining the decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly grow. The book is intended to be both readable by first-year M.Sc. students and interesting to an expert audience. The book opens by motivating a focus on providing a consistent taxonomy, pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a taxonomy or framework for thinking about how approaches to explainable NLP relate to one another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods, as well as how to best evaluate them. Finally, the book closes by providing a list of resources for further research on explainability.