You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book catalogues an exhibition of textbooks by authors from the University of Alberta. Each finished textbook contains its own story of challenges and victories. And each has its own power as a record of knowledge, a teaching tool, and an object of permanence and beauty.
This volume contains the proceedings of the International Congress of Mathematicians Satellite Conference on Algebraic and Combinatorial Approaches to Representation Theory, held August 12-16, 2010, at the National Institute of Advanced Studies, Bangalore, India, and the follow-up conference held May 18-20, 2012, at the University of California, USA. It contains original research and survey articles on various topics in the theory of representations of Lie algebras, quantum groups and algebraic groups, including crystal bases, categorification, toroidal algebras and their generalisations, vertex algebras, Hecke algebras, Kazhdan-Lusztig bases, $q$-Schur algebras, and Weyl algebras.
Two classes of manifolds whose geodesic flows are integrable are defined, and their global structures are investigated. They are called Liouville manifolds and Kahler-Liouville manifolds respectively. In each case, the author finds several invariants with which they are partly classified. The classification indicates, in particular, that these classes contain many new examples of manifolds with integrable geodesic flow.
This work is about extended affine Lie algebras (EALA's) and their root systems. EALA's were introduced by Høegh-Krohn and Torresani under the name irreducible quasi-simple Lie algebras. The major objective is to develop enough theory to provide a firm foundation for further study of EALA's. The first chapter of the paper is devoted to establishing some basic structure theory. It includes a proof of the fact that, as conjectured by Kac, the invariant symmetric bilinear form on an EALA can be scaled so that its restriction to the real span of the root system is positive semi-definite. The second chapter studies extended affine root systems (EARS) which are an axiomatized version of the root systems arising from EALA's. The concept of a semilattice is used to give a complete description of EARS. In the final chapter, a number of new examples of extended affine Lie algebras are given. The concluding appendix contains an axiomatic characterization of the nonisotropic roots in an EARS in a more general context than the one used in the rest of the paper.
In this book, the authors describe a continuum limit of the Toda ODE system, obtained by taking as initial data for the finite lattice successively finer discretizations of two smooth functions. Using the integrability of the finite Toda lattice, the authors adapt the method introduced by Lax and Levermore for the study of the small dispersion limit of the Korteweg de Vries equations to the case of the Toda lattice. A general class of initial data is considered which permits, in particular, the formation of shocks. A feature of the analysis in this book is an extensive use of techniques from the theory of Riemann-Hilbert problems.
The first comprehensive modern introduction to central simple algebra starting from the basics and reaching advanced results.
In this volume, the one-dimensional and two-dimensional Riemann problems for the transportation equations in gas dynamics are solved constructively. In either the 1-D or 2-D case, there are only two kinds of solutions: one involves Dirac delta waves, and the other involves vacuums, which has been merely discussed so far. The generalized Rankine-Hugoniot and entropy conditions for Dirac delta waves are clarified with viscous vanishing method. All of the existence, uniqueness and stability for viscous perturbations are proved analytically
Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper the authors study the generalization where countable is replaced by uncountable. They explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. They also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. The authors' results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.
Lie groups and their "derived objects", Lie algebras, appear in various fields of mathematics and physics. At least since the beginning of the 20th century, and after the famous works of Wilhelm Killing, Elie Cartan, Eugenio Elia Levi, Anatoly Malcev and Igor Ado on the structure of finite-dimensional Lie algebras, the classification and structure theory of infinite-dimensional Lie algebras has become an interesting and fairly vast field of interest. This dissertation focusses on the structure of Lie algebras of smooth and k-times differentiable sections of finite-dimensional Lie algebra bundles, which are generalizations of the famous and well-understood affine Kac-Moody algebras. Besides answering the immediate structural questions (center, commutator algebra, derivations, centroid, automorphism group), this work approaches a classification of section algebras by homotopy theory. Furthermore, we determine a universal invariant symmetric bilinear form on Lie algebras of smooth sections and use this form to define a natural central extension which is universal, at least in the case of Lie algebra bundles with compact base manifold.
This book provides a unified treatment for the study of the existence of equilibria of abstract economics in topological vector spaces from the viewpoint of Ky Fan minimax inequalities, which strongly depend on his infinite dimensional version of the classical Knaster, Kuratowski and Mazurkiewicz Lemma (KKM Lemma) in 1961. Studied are applications of general system versions of minimax inequalities and generalized quasi-variational inequalities, and random abstract economies and its applications to the system of random quasi-variational inequalities are given.