You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.
The book shows how the art of mathematical imagining is not as mysterious as it seems. Drawing on a variety of artistic resources the author reveals how anyone can begin to visualize the enigmatic 'imaginary numbers' that first baffled mathematicians in the 16th century.
Why narrative is essential to mathematics Circles Disturbed brings together important thinkers in mathematics, history, and philosophy to explore the relationship between mathematics and narrative. The book's title recalls the last words of the great Greek mathematician Archimedes before he was slain by a Roman soldier—"Don't disturb my circles"—words that seem to refer to two radically different concerns: that of the practical person living in the concrete world of reality, and that of the theoretician lost in a world of abstraction. Stories and theorems are, in a sense, the natural languages of these two worlds—stories representing the way we act and interact, and theorems giving us ...
The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology. The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure.
A companion to Mathematical Apocrypha (published in 2002) this second volume of anecdotes, stories, quips, and ruminations about mathematics and mathematicians is sure to please. It differs from other books of its type in that many of the stories are from the twentieth century and many about currently living mathematicians. A number of the best stories come from the author's first-hand experience. The writing is lively, engaging, and informative. There are stories the reader may wish to share with students and colleagues, friends, and relatives. The purpose of the book is to explore and to celebrate the many facets of mathematical life. The stories reveal mathematicians as intense, human, and sympathetic. They should resonate with readers everywhere. This book will appeal to students from high school through graduate school, to faculty and mathematical scientists of all stripes, and also to physicists, engineer, and anyone interested in mathematics.
Sixteen original essays exploring recent developments in the philosophy of mathematics, written in a way mathematicians will understand.
This work is a comprehensive treatment of recent developments in the study of elliptic curves and their moduli spaces. The arithmetic study of the moduli spaces began with Jacobi's "Fundamenta Nova" in 1829, and the modern theory was erected by Eichler-Shimura, Igusa, and Deligne-Rapoport. In the past decade mathematicians have made further substantial progress in the field. This book gives a complete account of that progress, including not only the work of the authors, but also that of Deligne and Drinfeld.
A collection of expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held at Boston University. The purpose of the conference, and indeed this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof, and to explain how his result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. The book begins with an overview of the complete proof, theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications.
Whether you are stumped by the "commutative law" in algebra or a whiz at multiplying three-digit numbers in your head, this book opens the door to the wonders of mathematical imagining. By using simple language and intriguing illustrations drawn by her husband, Hugh, Lillian Lieber presents subtle mathematical concepts in an easy-to-understand way. Over sixty years after its release, this whimsical exploration of how to think in a mathematical mood will continue to delight math-lovers of all ages. Barry Mazur's new introduction is a tribute to the Liebers' influence on generations of mathematicians.