You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This “lucid, masterfully written introduction to an often difficult subject . . . belongs on the bookshelf of every student of statistical physics” (Dr. Brian J. Albright, Applied Physics Division, Los Alamos National Laboratory). This book provides an accessible introduction to stochastic processes in physics and describes the basic mathematical tools of the trade: probability, random walks, and Wiener and Ornstein-Uhlenbeck processes. With an emphasis on applications, it includes end-of-chapter problems. Physicist and author Don S. Lemons builds on Paul Langevin’s seminal 1908 paper “On the Theory of Brownian Motion” and its explanations of classical uncertainty in natural phenomena. Following Langevin’s example, Lemons applies Newton’s second law to a “Brownian particle on which the total force included a random component.” This method builds on Newtonian dynamics and provides an accessible explanation to anyone approaching the subject for the first time. This volume contains the complete text of Paul Langevin’s “On the Theory of Brownian Motion,” translated by Anthony Gythiel.
An Introduction to Mathematical Proofs presents fundamental material on logic, proof methods, set theory, number theory, relations, functions, cardinality, and the real number system. The text uses a methodical, detailed, and highly structured approach to proof techniques and related topics. No prerequisites are needed beyond high-school algebra. New material is presented in small chunks that are easy for beginners to digest. The author offers a friendly style without sacrificing mathematical rigor. Ideas are developed through motivating examples, precise definitions, carefully stated theorems, clear proofs, and a continual review of preceding topics. Features Study aids including section su...
Mathematical modeling is the use of applying mathematics to real-world problems and investigating important questions about their outcomes. Mathematical Modeling with Excel presents various methods used to build and analyze mathematical models in a format that students can quickly comprehend. Excel is used as a tool to accomplish this goal of building and analyzing the models. Ideal for math and secondary math education majors, this text presents a wide variety of common types of models, as well as some new types, and presents each in a unique, easy-to-understand format. End-of-chapter exercises ask students to modify or refine the existing model, analyze it further, or adapt it to similar scenarios.
The Shape of Space, Third Edition maintains the standard of excellence set by the previous editions. This lighthearted textbook covers the basic geometry and topology of two- and three-dimensional spaces—stretching students’ minds as they learn to visualize new possibilities for the shape of our universe. Written by a master expositor, leading researcher in the field, and MacArthur Fellow, its informal exposition and engaging exercises appeal to an exceptionally broad audience, from liberal arts students to math undergraduate and graduate students looking for a clear intuitive understanding to supplement more formal texts, and even to laypeople seeking an entertaining self-study book to ...
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretat...
It is widely recognized that American culture is both exceptionally religious and exceptionally violent. Americans participate in religious communities in high numbers, yet American citizens also own guns at rates far beyond those of citizens in other industrialized nations. Since 9/11, United States scholars have understandably discussed religious violence in terms of terrorist acts, a focus that follows United States policy. Yet, according to Jon Pahl, to identify religious violence only with terrorism fails to address the long history of American violence rooted in religion throughout the country’s history. In essence, Americans have found ways to consider blessed some very brutal attit...
This new book from one of the most published authors in all of mathematics is an attempt to offer a new, more modern take on the Differential Equations course. The world is changing. Because of the theory of wavelets, Fourier analysis is ever more important and central. And applications are a driving force behind much of mathematics.This text text presents a more balanced picture. The text covers differential equations (both ordinary and partial), Fourier analysis and applications in equal measure and with equal weight. The Riemann integral is used throughout. We do not assume that the student knows any functional analysis. We likewise do not assume that the student has had a course in undergraduate real analysis. To make the book timely and exciting, a substantial chapter on basic properties of wavelets, with applications to signal processing and image processing is included. This should give students and instructors alike a taste of what is happening in the subject today.
This book provides sample exercises, techniques, and solutions to employ mathematical modeling to solve problems in Operations Research and Business Analytics. Each chapter begins with a scenario and includes exercises built on realistic problems faced by managers and others working in operations research, business analytics, and other fields employing applied mathematics. A set of assumptions is presented, and then a model is formulated. A solution is offered, followed by examples of how that model can be used to address related issues. Key elements of this book include the most common problems the authors have encountered over research and while consulting the fields including inventory th...
With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition
Praise for the First Edition "Luck, Logic, and White Lies teaches readers of all backgrounds about the insight mathematical knowledge can bring and is highly recommended reading among avid game players, both to better understand the game itself and to improve one’s skills." – Midwest Book Review "The best book I've found for someone new to game math is Luck, Logic and White Lies by Jörg Bewersdorff. It introduces the reader to a vast mathematical literature, and does so in an enormously clear manner. . ." – Alfred Wallace, Musings, Ramblings, and Things Left Unsaid "The aim is to introduce the mathematics that will allow analysis of the problem or game. This is done in gentle stages, ...