You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Because of the increasing need for ever better performing materials endowed with specific properties, macromolecular engineering has become a useful tool for designing well-architectured polymers (telomers, telechelics, stars, dendrimers, alternating, block- and graftcopolymers). These polymers are nowadays seeing an enormous growth. Among them, fluoropolymers are seen as high value added materials in many applications ranging from surfactants, optical fibers, biomaterials, coatings, to membranes for fuel cells. Indeed, the relationship between structure of the monomer to the properties of the polymers is of increasing interest so that these properties are tuned for the most appropriate appl...
Fluoropolymers are unique materials. Since the middle of the twentieth century fluropolymers have been used in applications where a wide temperature range, a high resistance to aggressive media, excellent tribological characteristics, and specific low adhesion are required. Today, researchers turn to fluoropolymers to solve new challenges and to develop materials with previously unattainable properties. Fascinating Fluoropolymers and Their Applications covers recent developments of fluoropolymer applications in energy, optical fibers, blood substitutes, textile coatings, membranes and other areas, written by experts in these fields. This volume in the Progress in Fluorine Science series is ideal for researchers and engineers who want to learn about the technology and applications of these special polymers, as well as industrial manufacturers who are interested in achieving new product characteristics in their respective industries.
Fluoropolymers display a wide range of remarkable properties and are used in a number of applications including high performance elastomers, thermoplastics, coatings for optical fibers, and hydrophobic and lipophobic surfaces. Fluorinated Polymers: Synthesis, Properties, Processing and Simulation covers the fundamentals of different fluorinated polymers. Topics include the kinetics of homopolymerisation and copolymerization, process chemistry, and controlled radical co-polymerisation techniques. Written by internationally recognized academic and industrial contributors, the book will be of interest to those in industry and academia working in the fields of materials science, polymer chemistry and energy applications of polymers. Together with Fluorinated Polymers: Applications, these books provide a complete overview of different fluorinated polymer materials and their uses.
Fluoropolymers are very unique materials. Since the middle of the twentieth century fluoropolymers have been used in applications where a wide temperature range, a high resistance to aggressive media, excellent tribological characteristics, and specific low adhesion are required. Today, researchers turn to fluoropolymers to solve new challenges and to develop materials with previously unattainable properties. Opportunities for Fluoropolymers: Synthesis, Characterization, Processing, Simulation and Recycling covers recent developments in fluoropolymers, including synthesis of new copolymers, strategies for radical polymerization of fluoromonomers (conventional or controlled; RDRP), and the modification of fluoropolymers to achieve desired material characteristics. This volume in the Progress in Fluorine Science series is ideal for researchers and engineers who want to learn about the synthetic strategies, properties, and recycling of these special polymers, as well as industrial manufacturers who are interested in achieving new product characteristics in their respective industries.
The excitement of the chemistry of organofluorine compounds stems from the unique reactions that arise and the "special effects" that introduction of fluorine impart on a molecule. Indeed, these effects are now exploited in a remarkable array of applications the whole of the chemical, pharmaceutical, and plant-protection industries. In this two-volume set, we have gathered authors with immense experience in various aspects of their fields and each is a world-authority on the important topics which they have described. The first volume treats the chemistry of fluorinated alkenes, which are important "building-blocks" for the synthesis of a range of fluorinated systems and are used widely in industry. The second volume is directed to techniques and synthons for obtaining fluorinated compounds.
Fluoropolymers display a wide range of remarkable properties and are used in a number of applications including high performance elastomers, thermoplastics, coatings for optical fibers, and hydrophobic and lipophobic surfaces. Fluorinated Polymers: Applications covers the recent developments in the uses of fluoropolymers. Examples include materials for energy applications such as fuel cell membranes, lithium ion batteries and photovoltaics, as well as high-tech areas such as aerospace and aeronautics, automotives, building industries, textile finishings and electronics. Written by internationally recognized academic and industrial contributors, the book will be of interest to those in industry and academia working in the fields of materials science, polymer chemistry and energy applications of polymers. Together with Fluorinated Polymers: Synthesis, Properties, Processing and Simulation, these books provide a complete overview of different fluorinated polymer materials and their uses.
Amphiphilic polymer co-networks (APCNs) are a type of polymeric hydrogel, their hydrophobic polymer segments and hydrophilic components produce less aqueous swelling, giving better mechanical properties than conventional hydrogels. This new class of polymers is attracting increasing attention, resulting in further basic research on the system, as well as new applications. This book focuses on new developments in the field of APCNs, and is organised in four sections: synthesis, properties, applications and modelling. Co-network architectures included in the book chapters are mainly those deriving from hydrophobic macro-cross-linkers, representing the classical approach; however, more modern d...
The definitive guide to creating fluorine-based compounds—and the materials of tomorrow Discovered as an element by the French chemist Henri Moissan in 1886, through electrolysis of potassium fluoride in anhydrous hydrogen fluoride—"le fluor," or fluorine, began its chemical history as a substance both elusive and dangerous. With a slight pale yellow hue, fluorine is at room temperature a poisonous diatomic gas. Resembling a spirit from a chemical netherworld, fluorine is highly reactive, difficult to handle, yet very versatile as a reagent—with the power to form compounds with almost any other element. Comprising 20% of pharmaceutical products and 30% of agrochemical compounds, as wel...
This book focuses on the new frontiers of organofluorine chemistry in synthetic, organometallic, bioorganic, medicinal, agricultural, and materials chemistry as well as chemical physics and their applications to biomedical and material sciences. The extraordinary potential of fluorine-containing molecules in biology, pharmaceuticals, agrochemical, materials and their wide range of applications has been recognized by researchers who are not in the traditional fluorine chemistry field, and thus the new wave of organofluorine chemistry is rapidly expanding its frontiers.Featuring major leading researchers from all over the world and their cutting-edge research projects, this title reviews the recent advances and envision the new exciting developments in the future. Frontiers of Organofluorine Chemistry is an excellent reference book for professional researchers, and graduate students, in both industry and academia to get inspirations and new ideas for their projects.
Fluorinated Materials for Energy Conversion offers advanced information on the application of fluorine chemistry to energy conversion materials for lithium batteries, fuel cells, solar cells and so on. Fluorine compounds and fluorination techniques have recently gained important roles in improving the electrochemical characteristics of such energy production devices. The book therefore focuses on new batteries with high performance, the improvements of cell performance and the improvement of electrode and cell characteristics. The authors present new information on the effect of fluorine and how to make use of fluorination techniques and fluorine compounds. With emphasis on recent developments, this book is suitable for students, researchers and engineers working in chemistry, materials science and electrical engineering. - Contains practical information, supported by examples - Provides an update on recent developments in the field - Written by specialists working in fluorine chemistry, electrochemistry, polymer and solid state chemistry