You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book collects a selection of papers presented at ELECTRIMACS 2019, the 13th international conference of the IMACS TC1 Committee, held in Salerno, Italy, on 21st-23rd May 2019. The conference papers deal with modelling, simulation, analysis, control, power management, design optimization, identification and diagnostics in electrical power engineering. The main application fields include electric machines and electromagnetic devices, power electronics, transportation systems, smart grids, electric and hybrid vehicles, renewable energy systems, energy storage, batteries, supercapacitors and fuel cells, and wireless power transfer. The contributions included in Volume 1 are particularly focused on electrical engineering simulation aspects and innovative applications.
Wireless Power Transfer is the second edition of a well received first book, which published in 2012. It represents the state-of-the-art at the time of writing, and addresses a unique subject of great international interest in terms of research. Most of the chapters are contributed by the main author, though as in the first edition several chapters are contributed by other authors. The authors of the various chapters are experts in their own right on the specific topics within wireless energy transfer. Compared to the first edition, this new edition is more comprehensive in terms of the concepts discussed, and the range of current industrial applications which are presented, such as those of...
In the last two decades fractional differential equations have been used more frequently in physics, signal processing, fluid mechanics, viscoelasticity, mathematical biology, electro chemistry and many others. It opens a new and more realistic way to capture memory dependent phenomena and irregularities inside the systems by using more sophisticated mathematical analysis. This monograph is based on the authors’ work on stabilization and control design for continuous and discrete fractional order systems. The initial two chapters and some parts of the third chapter are written in tutorial fashion, presenting all the basic concepts of fractional order system and a brief overview of sliding mode control of fractional order systems. The other parts contain deal with robust finite time stability of fractional order systems, integral sliding mode control of fractional order systems, co-operative control of multi-agent systems modeled as fractional differential equation, robust stabilization of discrete fractional order systems, high performance control using soft variable structure control and contraction analysis by integer and fractional order infinitesimal variations.
Optimal Operation of Integrated Energy Systems Under Uncertainties: Distributionally Robust and Stochastic Models discusses new solutions to the rapidly emerging concerns surrounding energy usage and environmental deterioration. Integrated energy systems (IESs) are acknowledged to be a promising approach to increasing the efficiency of energy utilization by exploiting complementary (alternative) energy sources and storages. IESs show favorable performance for improving the penetration of renewable energy sources (RESs) and accelerating low-carbon transition. However, as more renewables penetrate the energy system, their highly uncertain characteristics challenge the system, with significant ...
Parallel to the physical space in our world, there exists cyberspace. In the physical space, there are human and nature interactions that produce products and services. On the other hand, in cyberspace there are interactions between humans and computer that also produce products and services. Yet, the products and services in cyberspace don’t materialize—they are electronic, they are millions of bits and bytes that are being transferred over cyberspace infrastructure.
description not available right now.