You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The Earth is a dynamic planet whose changes and variations affect our communications, energy, health, food, housing, and transportation infrastructure. Understanding these changes requires a range of observations acquired from a variety of land-, sea-, air-, and space-based platforms. To assist NASA, NOAA, and the USGS develop these tools, the NRC was asked by these agencies to carry out a decadal strategy survey of Earth science and applications from space. In particular, the study is to develop the key scientific questions on which to focus Earth and environmental observations in the period 2005-2015, and a prioritized list of space programs, missions, and supporting activities to address these questions. This interim report outlines a key element of the studyâ€"the rationale for tying Earth observations to societal needâ€"and identifies urgent near-term actions needed to achieve this goal. A final report, due in late 2006, will provide the list of recommended space missions, programs, and supporting.
In 1972 NASA launched the Earth Resources Technology Satellite (ETRS), now known as Landsat 1, and on February 11, 2013 launched Landsat 8. Currently the United States has collected 40 continuous years of satellite records of land remote sensing data from satellites similar to these. Even though this data is valuable to improving many different aspects of the country such as agriculture, homeland security, and disaster mitigation; the availability of this data for planning our nation\'s future is at risk. Thus, the Department of the Interior\'s (DOI\'s) U.S. Geological Survey (USGS) requested that the National Research Council\'s (NRC\'s) Committee on Implementation of a Sustained Land Imagi...
In 2000, the nation's next-generation National Polar-orbiting Operational Environmental Satellite System (NPOESS) program anticipated purchasing six satellites for $6.5 billion, with a first launch in 2008. By November 2005, however, it became apparent that NPOESS would overrun its cost estimates by at least 25 percent. In June 2006, the planned acquisition of six spacecraft was reduced to four, the launch of the first spacecraft was delayed until 2013, and several sensors were canceled or descoped in capability. Based on information gathered at a June 2007 workshop, "Options to Ensure the Climate Record from the NPOESS and GOES-R Spacecraft," this book prioritizes capabilities, especially t...
description not available right now.
As civil space policies and programs have evolved, the geopolitical environment has changed dramatically. Although the U.S. space program was originally driven in large part by competition with the Soviet Union, the nation now finds itself in a post-Cold War world in which many nations have established, or are aspiring to develop, independent space capabilities. Furthermore discoveries from developments in the first 50 years of the space age have led to an explosion of scientific and engineering knowledge and practical applications of space technology. The private sector has also been developing, fielding, and expanding the commercial use of space-based technology and systems. Recognizing the new national and international context for space activities, America's Future in Space is meant to advise the nation on key goals and critical issues in 21st century U.S. civil space policy.
In 2000, the nation's next-generation National Polar-orbiting Operational Environmental Satellite System (NPOESS) program anticipated purchasing six satellites for $6.5 billion, with a first launch in 2008. By November 2005, however, it became apparent that NPOESS would overrun its cost estimates by at least 25 percent. In June 2006, the planned acquisition of six spacecraft was reduced to four, the launch of the first spacecraft was delayed until 2013, and several sensors were canceled or descoped in capability. To examine the impacts of these changes, particularly those associated with climate research, and ways to mitigate those impacts, NASA and NOAA asked the NRC to add this task to its ongoing "decadal survey," Earth Science and Applications from Space. The sponsors and the NRC agreed to address this task separately and to base its analysis on a major workshop. This book presents summaries of discussions at the workshop, which included sessions on the measurements and sensors originally planned for NPOESS and GOES-R; generation of climate data records; mitigation options, including the role of international partners; and cross-cutting issues.
U.S.-European Collaboration in Space Science reviews the past 30 years of space-based research across the Atlantic. The book, which was prepared jointly with the European Space Science Committee (under the aegis of the European Science Foundation) begins with a broad survey of the historical and political context of U.S.-European cooperation and collaboration in space. The focus of the book is a set of 13 U.S.-European missions in astrophysics, space physics, planetary sciences, earth sciences, and life and microgravity research that illustrate "lessons learned" on the evolution of the cooperation, mission planning and scheduling, international agreements, cost-sharing, management, and scientific output. These lessons form the basis of the joint committee's findings and recommendations, which serve to improve the future conduct and enhance the scientific output of U.S.-European cooperation and collaboration in space science.
Through an examination of case studies, agency briefings, and existing reports, and drawing on personal knowledge and direct experience, the Committee on Assessment of Impediments to Interagency Cooperation on Space and Earth Science Missions found that candidate projects for multiagency collaboration in the development and implementation of Earth-observing or space science missions are often intrinsically complex and, therefore costly, and that a multiagency approach to developing these missions typically results in additional complexity and cost. Advocates of collaboration have sometimes underestimated the difficulties and associated costs and risks of dividing responsibility and accountab...
The Earth system functions and connects in unexpected ways - from the microscopic interactions of bacteria and rocks to the macro-scale processes that build and erode mountains and regulate Earth's climate. Efforts to study Earth's intertwined processes are made even more pertinent and urgent by the need to understand how the Earth can continue to sustain both civilization and the planet's biodiversity. A Vision for NSF Earth Sciences 2020-2030: Earth in Time provides recommendations to help the National Science Foundation plan and support the next decade of Earth science research, focusing on research priorities, infrastructure and facilities, and partnerships. This report presents a compelling and vibrant vision of the future of Earth science research.