You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
Scientists have long sought to unravel the fundamental mysteries of the land, life, water, and air that surround us. But as the consequences of humanity's impact on the planet become increasingly evident, governments are realizing the critical importance of understanding these environmental systemsâ€"and investing billions of dollars in research to do so. To identify high-priority environmental science projects, Grand Challenges in Environmental Sciences explores the most important areas of research for the next generation. The book's goal is not to list the world's biggest environmental problems. Rather it is to determine areas of opportunity thatâ€"with a concerted investmentâ€"could yield significant new findings. Nominations for environmental science's "grand" challenges were solicited from thousands of scientists worldwide. Based on their responses, eight major areas of focus were identifiedâ€"areas that offer the potential for a major scientific breakthrough of practical importance to humankind, and that are feasible if given major new funding. The book further pinpoints four areas for immediate action and investment.
Manufacturing will unquestionably be a very different enterprise in 2020 from what it is today. This book presents an exciting picture of the profitable and productive potential of manufacturing two decades hence. This book takes an international view of future manufacturing that considers the leaps and bounds of technological innovation and the blurring of the lines between the manufacturing and service industries. The authors identify ten strategic technology areas as the most important for research and development and they recommend ways to address crosscutting questions. Representing a variety of industries, the authors identify six "grand challenges" that must be overcome for their visi...
A problem facing many churches today is the lack of strong leadership in the area of stewardship, particularly the stewardship of financial resources. Church leaders--clergy and laity--have had little or no training in this area, and they feel uncomfortable and embarrassed in encouraging financial support for the church's ministries. Failure to provide decisive leadership in this area has had negative consequences for the church, including a decreasing percentage of charitable dollars directed toward churches and a growing lack of understanding among church members of the relationship between giving and spiritual growth. Creating Generous Congregations is written to assist church leaders in gaining necessary expertise in the stewardship of financial resources, so that persons will be invited to grow spiritually and the various ministries of the church will flourish.
The field of corrosion science and engineering is on the threshold of important advances. Advances in lifetime prediction and technological solutions, as enabled by the convergence of experimental and computational length and timescales and powerful new modeling techniques, are allowing the development of rigorous, mechanistically based models from observations and physical laws. Despite considerable progress in the integration of materials by design into engineering development of products, corrosion considerations are typically missing from such constructs. Similarly, condition monitoring and remaining life prediction (prognosis) do not at present incorporate corrosion factors. Great oppor...
Cities have experienced an unprecedented rate of growth in the last decade. More than half the world's population lives in urban areas, with the U.S. percentage at 80 percent. Cities have captured more than 80 percent of the globe's economic activity and offered social mobility and economic prosperity to millions by clustering creative, innovative, and educated individuals and organizations. Clustering populations, however, can compound both positive and negative conditions, with many modern urban areas experiencing growing inequality, debility, and environmental degradation. The spread and continued growth of urban areas presents a number of concerns for a sustainable future, particularly i...
Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, ...
"The National Academies of Sciences, Engineering, and Medicine convened a committee of prominent environmental engineers, scientists, and policy experts to identify grand challenges and opportunities in environmental engineering for the next several decades. The committee was also asked to describe how the field of environmental engineering and its aligned sciences might evolve to better address these needs"--Preface.
This book provides professional development leaders and teachers with a framework for integrating authentic real-world performance tasks into science, technology, engineering, and mathematics (STEM) classrooms. We incorporate elements of problem-based learning to engage students around grand challenges in energy and environment, place-based leaning to motivate students by relating the problem to their community, and Understanding by Design to ensure that understanding key concepts in STEM is the outcome. Our framework has as a basic tenet interdisciplinary STEM approaches to studying real-world problems. We invited professional learning communities of science and mathematics teachers to brin...
Engineering has long gravitated toward great human ambitions: navigation of the oceans, travel to the moon and back, Earth exploration, national security, industrial and agricultural revolutions, communications, and transportation. Some ambitions have been realized, some remain unfulfilled, and some are yet to be determined. In 2008 a committee of distinguished engineers, scientists, entrepreneurs, and visionaries set out to identify the most important, tractable engineering system challenges that must be met in this century for human life as we know it to continue on this planet. For the forum at the National Academy of Engineering's 2015 annual meeting, 7 of the 18 committee members who formulated the Grand Challenges for Engineering in 2008 reflected on what has happened in the seven year since. Grand Challenges for Engineering: Imperatives, Prospects, and Priorities summarizes the discussions and presentations from this forum.