You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Not only do modeling and simulation help provide a better understanding of how real-world systems function, they also enable us to predict system behavior before a system is actually built and analyze systems accurately under varying operating conditions. Modeling and Simulation of Systems Using MATLAB® and Simulink® provides comprehensive, state-of-the-art coverage of all the important aspects of modeling and simulating both physical and conceptual systems. Various real-life examples show how simulation plays a key role in understanding real-world systems. The author also explains how to effectively use MATLAB and Simulink software to successfully apply the modeling and simulation techniq...
This book is an introduction to some new fields in soft computing with its principal components of fuzzy logic, ANN and EA. The approach in this book is to provide an understanding of the soft computing field and to work through soft computing using examples. It also aims to integrate pseudo-code operational summaries and Matlab codes, to present computer simulation, to include real world applications and to highlight the distinctive work of human consciousness in machine.
With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.
Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.
This volume presents new directions and solutions in broadly perceived intelligent systems. An urgent need this volume has occurred as a result of vivid discussions and presentations at the "IEEE-IS’ 2006 – The 2006 Third International IEEE Conference on Intelligent Systems" held in London, UK, September, 2006. This book is a compilation of many valuable inspiring works written by both the conference participants and some other experts in this new and challenging field.
This edited book reports recent research results and provides a state-of-the-art on intelligent decision support systems applications, lessons learned and future research directions. The book covers a balanced mixture of theory and practice, including new methods and developments of intelligent decision support systems applications in Society and Policy Support. Its main objective is to gather a peer-reviewed collection of high quality contributions in the relevant topic areas.
In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research...
Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to in...
"This book explores the possible applications of machine learning, deep learning, soft computing, and evolutionary computing techniques in the design, implementation, and optimization of challenging healthcare engineering solutions"--
Research on applying principles of quantum computing to improve the engineering of intelligent systems has been launched since late 1990s. This emergent research field concentrates on studying on quantum computing that is characterized by certain principles of quantum mechanics such as standing waves, interference, quantum bits, coherence, superposition of states, and concept of interference, combined with computational intelligence or soft computing approaches, such as artificial neural networks, fuzzy systems, evolutionary computing, swarm intelligence and hybrid soft computing methods. This volume offers a wide spectrum of research work developed using soft computing combined with quantum computing systems.