You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This textbook covers key topics of Elementary Calculus through selected exercises, in a sequence that facilitates development of problem-solving abilities and techniques. It opens with an introduction to fundamental facts of mathematical logic, set theory, and pre-calculus, extending toward functions, limits, derivatives, and integrals. Over 300 solved problems are approached with a simple, direct style, ordered in a way that positively challenges students and helps them build self-confidence as they progress. A special final chapter adds five carefully crafted problems for a comprehensive recap of the work. The book is aimed at first-year students of fields in which calculus and its applications have a role, including Science, Technology, Engineering, Mathematics, Economics, Architecture, Management, and Applied Social Sciences, as well as students of Quantitative Methods courses. It can also serve as rich supplementary reading for self-study.
This book contains a brief historical introduction and state of the art in fractional calculus. The author introduces some of the so-called special functions, in particular, those which will be directly involved in calculations. The concepts of fractional integral and fractional derivative are also presented. Each chapter, except for the first one, contains a list of exercises containing suggestions for solving them and at last the resolution itself. At the end of those chapters there is a list of complementary exercises. The last chapter presents several applications of fractional calculus.
This book is an exposition of the algebra and calculus of differential forms, of the Clifford and Spin-Clifford bundle formalisms, and of vistas to a formulation of important concepts of differential geometry indispensable for an in-depth understanding of space-time physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields are shown to have representatives by objects of the same mathematical nature, namely sections of an appropriate Clifford bundle. This approach reveals unity in diversity and suggests relationships that are hidden in the standard formalisms and opens new paths for research. This thoroughly revised second edition also...
This Worldwide List of Alternative Theories and Critics (only avalailable in english language) includes scientists involved in scientific fields. The 2023 issue of this directory includes the scientists found in the Internet. The scientists of the directory are only those involved in physics (natural philosophy). The list includes 9700 names of scientists (doctors or diplome engineers for more than 70%). Their position is shortly presented together with their proposed alternative theory when applicable. There are nearly 3500 authors of such theories, all amazingly very different from one another. The main categories of theories are presented in an other book of Jean de Climont THE ALTERNATIVE THEORIES
This book deals with the two fundamental subjects of electromagnetism. It is a useful text for courses in electromagnetism, electrical circuits, mathematical methods of physics, and the history and philosophy of science. It covers how to calculate force between two current carrying circuits, and net force on a part of a closed circuit. The calculation of the mutual inductance between two circuits and self-inductance of a single closed circuit is also described. Experiments explain the main expressions of Ampere and Grassmann. A must to help deepen the knowledge of the mind of any student of science.
Special functions play a very important role in solving various families of ordinary and partial differential equations as well as their fractional-order analogs, which model real-life situations. Owing to the non-local nature and memory effect, fractional calculus is capable of modeling many situations which arise in engineering. This book includes a collection of related topics associated with such equations and their relevance and significance in engineering. Special Functions in Fractional Calculus and Engineering highlights the significance and applicability of special functions in solving fractional-order differential equations with engineering applications. This book focuses on the no...
The 2nd edition of this book is essentially an extended version of the 1st and provides a very sound overview of the most important special functions of Fractional Calculus. It has been updated with material from many recent papers and includes several surveys of important results known before the publication of the 1st edition, but not covered there. As a result of researchers’ and scientists’ increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-Leffler functions have caught the interest of the scientific community. Focusing on the theory of Mittag-Leffler functions, this volume offers a self-containe...
This volume offers an integrated understanding of how the theory of general relativity gained momentum after Einstein had formulated it in 1915. Chapters focus on the early reception of the theory in physics and philosophy and on the systematic questions that emerged shortly after Einstein's momentous discovery. They are written by physicists, historians of science, and philosophers, and were originally presented at the conference titled Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity, held at the University of Bern from September 12-14, 2017. By establishing the historical context first, and then moving into more philosophical chapters, this volume w...